
Cybersecurity 2017
CSEC2017

Version 1.0 Report
31 December 2017

32

4.2 2 Knowledge Area: Software Security
The Software Security knowledge area focuses on the development and use of software
that reliably preserves the security properties of the information and systems it protects.
The security of a system, and of the data it stores and manages, depends in large part on
the security of its software. The security of software depends on how well the
requirements match the needs that the software is to address, how well the software is
designed, implemented, tested, and deployed and maintained. The documentation is
critical for everyone to understand these considerations, and ethical considerations arise
throughout the creation, deployment, use, and retirement of software.
The Software Security knowledge area addresses these security issues. The knowledge
units within this knowledge area are comprised of fundamental principles and practices.

4.2.1 Knowledge Units and Topics
The following table lists the principles essentials, knowledge units, and topics of the
Software Security knowledge area. These knowledge units have been validated by the
Software Security Working Group using the Open Web Application Security Project
(OWASP) Top 10 and the IEEE “Avoiding the Top 10 Software Security Design Flaws.”

SOFTWARE SECURITY

Essentials
- Fundamental design principles including least privilege, open design,

and abstraction,
- Security requirements and their role in design,
- Implementation issues,
- Static and dynamic testing,
- Configuring and patching, and
- Ethics, especially in development, testing and vulnerability disclosure.

Knowledge Units Topics Description/Curricular Guidance

Fundamental
Principles

[See also
Component
Security KA for
related content]

 This knowledge unit introduces the principles that
underlie both design and implementation. The
first five are restrictiveness principles, the next
three are simplicity principles, and the rest are
methodology principles.

 Least privilege Software should be given only those privileges that
it needs to complete its task.

 Fail-safe defaults The initial state should be to deny access unless
access is explicitly required. Then, unless software
is given explicit access to an object, it should be
denied access to that object and the protection state
of the system should remain unchanged.

 Complete mediation Software should validate every access to objects
to ensure that the access is allowed.

 Separation Software should not grant access to a resource,
or take a security-relevant action, based on a
single condition.

Cybersecurity 2017
CSEC2017

Version 1.0 Report
31 December 2017

33

 Minimize trust Software should check all inputs and the results of
all security-relevant actions.

 Economy of mechanism Security features of software should be as simple
as possible.

 Minimize common
mechanism

The sharing of resources should be reduced as
much as possible.

 Least astonishment Security features of software, and security
mechanisms it implements, should be designed
so that their operation is as logical and simple
as possible.

 Open design Security of software, and of what that software
provides, should not depend on the secrecy of
its design or implementation.

 Layering Organize software in layers so that modules at a
given layer interact only with modules in the layers
immediately above and below it. This allows you to
test the software one layer at a time, using either
top-down or bottom-up techniques, and reduces the
access points, enforcing the principle of separation.

 Abstraction Hide the internals of each layer, making only the
interfaces available; this enables you to change
how a layer carries out its tasks without affecting
components at other layers.

 Modularity Design and implement the software as a collection
of co-operating components (modules); indeed,
each module interface is an abstraction.

 Complete linkage Tie software security design and implementation
to the security specifications for that software.

 Design for iteration Plan the design in such a way that it can be
changed, if needed. This minimizes the effects
with respect to the security of changing the design
if the specifications do not match an environment
that the software is used in.

 Design This knowledge unit describes techniques for
including security considerations throughout
the design of software.

 Derivation of security
requirements

Beginning with business, mission, or other
objectives, determine what security requirements
are necessary to succeed. These may also be
derived, or changed, as the software evolves.

 Specification of security
requirements

Translate the security requirements into a form
that can be used (formal specification, informal
specifications, specifications for testing).

 Software development
lifecycle/Security
development lifecycle

Include the following examples: waterfall
model, agile development and security.

Cybersecurity 2017
CSEC2017

Version 1.0 Report
31 December 2017

34

 Programming languages
and type-safe languages

Discuss the problems that programming languages
introduce, what type-safety does, and why it is
important.

 Implementation This knowledge unit describes techniques for
including security considerations throughout the
implementation of software.

 Validating input and
checking its
representation

For this topic:
● Check bounds of buffers and values of

integers to be sure they are in range, and
● Check inputs to make sure they are what

is expected and will be processed/
interpreted correctly.

 Using APIs correctly For this topic:
● Ensure parameters and environments are

validated and controlled so that the API enforces
the security policy properly, and

● Check the results of using the API for problems.

 Using security features For this topic:
● Use cryptographic randomness, and
● Properly restrict process privileges.

 Checking time and
state relationships

For this topic:
● Check that the file acted upon is the one for

which the relevant attributes are checked, and
● Check that processes run.

 Handling exceptions
and errors properly

For this topic:
● Block or queue signals during signal

processing, if necessary, and
● Determine what information should be given to

the user, balancing usability with any need to
hide some information, and how and to whom
to report that information.

 Programming robustly This topic is sometimes called secure or defensive
programming. Curricular content should include:
● Only deallocate allocated memory,
● Initialize variables before use, and
● Don't rely on undefined behavior.

 Encapsulating structures
and modules

This topic includes classes and other
instantiations. Example: isolating processes.

 Taking environment into
account

Example: don't put sensitive information in
the source code.

Analysis and Testing
[See also Component
Security KA for
related content]

 This knowledge unit introduces testing
considerations for validating that the software meets
stated (and unstated) security requirements and
specifications. Unstated requirements include those
related to robustness in general.

 Static and dynamic analysis This topic describes the different methods for each
of these, includes how static and dynamic analysis
work together, and the limits and benefits of each,
as well as how to perform these types of analyses
on very large software systems.

Cybersecurity 2017
CSEC2017

Version 1.0 Report
31 December 2017

35

 Unit testing This topic describes how to test component parts
of the software, like modules.

 Integration testing This topic describes how to test the software
components as they are integrated

 Software testing This topic describes how to test the software as a
whole, and place unit and integration testing in a
proper framework.

 Deployment and
Maintenance

This knowledge unit discusses security
considerations in the use of software, and in its
deployment, maintenance, and removal.

 Configuring This topic covers how to set up the software
system to make it function correctly.

 Patching and the
vulnerability lifecycle

This topic includes managing vulnerability reports,
fixing the vulnerabilities, testing the patch and
patch distribution.

 Checking environment This topic covers ensuring the environment
matches the assumptions made in the software,
and if not, how to handle the conflict

 DevOps This topic combines development and operation,
and the automation and monitoring of both.

 Decommissioning/Retiring This topic describes what happens when the
software is removed, and how to remove it without
causing security problems.

 Documentation This knowledge unit describes how to introduce
and include information about security
considerations in configuration, use, and other
aspects of using the software and maintaining it
(including modifying it when needed).

 Installation documents This topic includes installation and
configuration documentation.

 User guides and manuals This topic includes tutorials and cheat sheets
(brief guides); these should emphasize any
potential security problems the users can cause.

 Assurance documentation This topic focuses on how correctness was
established, and what correctness means
h

 Security documentation This topic focuses on potential security
problems, how to avoid them, and if they occur,
what the effects might be and how to deal with
th

Ethics
[See also
Organizational
Security KA,and
Societal Security
KA for related
content.]

 This knowledge unit introduces ethical
considerations in all of the above areas, so
students will be able to reason about the
consequences of security-related choices and
effects.

Cybersecurity 2017
CSEC2017

Version 1.0 Report
31 December 2017

36

 Ethical issues in software
development

This topic covers code reuse (licensing),
professional responsibility, codes of ethics such as
the ACM/IEEE-CS Software Engineering Code of
Ethics and Professional Practice.

 Social aspects of
software development

This topic covers considerations of the effects of
software under development, both when the
software works properly and the consequences of
poor or non-secure programming practices.

 Legal aspects of
software development

This topic discusses the liability aspects of
software, regulations; also compliance and issues
related to it.

 Vulnerability disclosure This topic covers how to disclose, to whom to
disclose, and when to disclose (“responsible
disclosure”).

 What, when and why to test This topic describes the ethical implications
of testing, especially including corner cases.

4.2.2 Essentials and Learning Outcomes
Students are required to demonstrate proficiency in each of the essential concepts through
achievement of the learning outcomes. Typically, the learning outcomes lie within the
understanding and applying levels in the Bloom’s Revised Taxonomy
(http://ccecc.acm.org/assessment/blooms).

Essentials Learning outcomes

Fundamental Design Principles;
Least Privilege, Open Design, and
Abstraction

 Discuss the implications of relying on open design or the secrecy
of design for security.

 List the three principles of security.
 Describe why each principle is important to security.
 Identify the needed design principle.

Security requirements and the roles
they play in design

 Explain why security requirements are important.
 Identify common attack vectors.
 Describe the importance of writing secure and robust programs.
 Describe the concept of privacy including personally

identifiable information.
Implementation issues

 Explain why input validation and data sanitization are necessary.
 Explain the difference between pseudorandom numbers

and random numbers.
 Differentiate between secure coding and patching and explain

the advantage of using secure coding techniques.
 Describe a buffer overflow and why it is a potential

security problem.
Static, dynamic analysis

 Explain the difference between static and dynamic analysis.
 Discuss a problem that static analysis cannot reveal.
 Discuss a problem that dynamic analysis cannot reveal.

http://ccecc.acm.org/assessment/blooms

Cybersecurity 2017
CSEC2017

Version 1.0 Report
31 December 2017

37

Configuring, patching
 Discuss the need to update software to fix security vulnerabilities.
 Explain the need to test software after an update but before

the patch is distributed.
 Explain the importance of correctly configuring software.

Ethics, especially in development,
testing, and vulnerability disclosure

 Explain the concept that because you can do it, it doesn’t mean
you should do it.

 Discuss the ethical issues in disclosing vulnerabilities.
 Discuss the ethics of thorough testing, especially corner cases.
 Identify the ethical effects and impacts of design decisions.

	4.2 2 Knowledge Area: Software Security
	4.2.1 Knowledge Units and Topics
	4.2.2 Essentials and Learning Outcomes

