
USB Flash Drive 

Forensics

Philip A. Polstra, Sr.

University of 

Dubuque



USB Basics

• History

• Hardware

• Software



History

• Non-universal serial, PS/2 ports, & LPT

• 1996 USB 1.0 (1.5 or 12 Mbps)

• 1998 USB 1.1

• 2000 USB 2.0 (1.5, 12, or 480 Mbps)

• Long pause

• 2008 USB 3.0 (up to 5 Gbps)



Hardware

• Simple 4-wire connection (power, ground, 2 data wires)

• Cabling prevents improper connections

• Hot pluggable

• Differential voltages provide greater immunity to noise

• Cable lengths up to 16 feet are possible 

Pin Name Cable color Description

1 VBUS Red +5 V

2 D− White Data −

3 D+ Green Data +

4 GND Black Ground

http://en.wikipedia.org/wiki/Ground_(electricity)


Software

• Automatic configuration

• No settable jumpers

• Enumeration

• Standard device classes with corresponding drivers

– HID

– Printer

– Audio

– Mass Storage



USB Flash Drives

• Hardware

• Software

• Filesystems

• Windows



Hardware



Software

• Usually implemented in firmware within specialized controller chips

• Must:

– Detect communication directed at drive

– Respond to standard requests

– Check for errors

– Manage power

– Exchange data



Filesystems

• Most preformatted with FAT or FAT32

• NTFS

• TrueFFS

• ExtremeFFS

• JFFS

• YAFFS

• Various UNIX/Linux file systems



USB Flash Drives and Windows

• Connecting a Drive

• Blocking write operations

• Who was here?



Connecting a Drive

• Device is connected

• Hub detects

• Host (PC) is informed of new device

• Hub determines device speed capability as indicated by location of pull-
up resistors

• Hub resets the device

• Host determines if device is capable of high speed (using chirps)

• Hub establishes a signal path

• Host requests descriptor from device to determine max packet size

• Host assigns an address

• Host learns devices capabilities

• Host assigns and loads an appropriate device driver (INF file)

• Device driver selects a configuration



Blocking Write Operations (sometimes)

• Some flash drives have write-protect switches (somewhat rare)

• HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\

StorageDevicePolicies\ WriteProtect

– Blocks writing to ALL USB devices

• Commercial write-blockers

• Microcontroller-based device (discussed later)



Who Was Here?

• Windows records all USB device connections in registry

• Utilities such as USBDeview will easily display this information



Forensics

• Flash Drive as Memory

• Flash Drive as Storage Media



Flash Drive as Memory

• Typically utilize NAND flash memory

• Memory degrades after 10,000 write cycles 

• Most chips not even close to high-speed USB speed (480 Mbps)

• Can only be written in blocks (usually 512, 2048, or 4096 bytes)

• Chips are somewhat easily removed from damaged drives for 

forensic recovery

• Some controllers have JTAG capability which can be used for 

memory access

• Some controller chips steal some flash memory for themselves



Flash Drive as Storage Media

• Nearly all flash drives present themselves as SCSI hard drives

• “Hard drive” sectors are typically 512, 2048, or 4096 bytes

• SCSI transparent command set is used

• Most drives are formatted as one partition or logical unit

– Should check for additional logical units (max LUN >0)

• Should check reported versus actual media size

– Info can be hidden in higher sectors

– Some cheap drives are out there that grossly over report size

– A typical 512 byte sector needs 16 bytes for error correction



Fun(?) with Microcontrollers

• Chip Choice

• Talking to Flash Drives

• A Simple Duplicator

• Creating an Image Without a Computer

• Computer Connected Microcontroller



Chip Choice

• FTDI Vinculum II dual USB host controller

– 2 full-speed USB 2.0 interfaces (host or slave capable)

– 256 KB E-flash memory

– 16 KB RAM

– 2 SPI slave and 1 SPI master interfaces

– Easy-to-use IDE 

– Simultaneous multiple file access on BOMS devices

• Several development modules available

– Convenient for prototyping (only SMD chips available)

– Cheap enough to embed in final device



Chip Choice (continued)



Chip Choice (continued)



Chip Choices (continued)



Chip Choice (continued)



Chip Choice (continued)



Chip Choice (continued)



A Simple Duplicator

• Insert a flash drive to be copied

• Insert a target drive for copy

– Ideally the identical model

– Should be at least the same size

– Should use identical block size

• A sector by sector copy is performed

– Should work on majority of drives examined

– Requires approximately 11 minutes/GB



Talking to a Flash Drive

• Bulk-Only Mass Storage (aka BBB) protocol used

– All communications use bulk endpoints

– Three phases: CBW, data-transport (optional), CSW

– Commands sent to drive using a Command Block Wrapper (CBW)

– CBW contains Command Block (CB) with actual command

– Nearly all drives use a (reduced) SCSI command set

– Commands requiring data transport will send/receive on bulk endpoints

– All transactions are terminated by a Command Status Wrapper (CSW)



Command Block Wrapper

typedef struct _USB_MSI_CBW {

unsigned long dCBWSignature; //0x43425355

unsigned long dCBWTag; // associates CBW with CSW response

unsigned long dCBWDataTransferLength; // bytes to send or receive

unsigned char bCBWFlags; // bit 7 0=OUT, 1=IN all others zero

unsigned char bCBWLUN; // logical unit number (usually zero)

unsigned char bCBWCBLength; // 3 hi bits zero, rest bytes in CB

unsigned char bCBWCB[16]; // the actual command block (>= 6 

bytes)

} USB_MSI_CBW;



Command Block

• 6-16 bytes depending on command

• Command is first byte

• Format Unit Example:

typedef struct _CB_FORMAT_UNIT {

unsigned char OperationCode; //must be 0x04

unsigned char LUN:3; // logical unit number (usually zero)

unsigned char FmtData:1; // if 1, extra parameters follow command

unsigned char CmpLst:1; // if 0, partial list of defects, 1, complete

unsigned char DefectListFormat:3; //000 = 32-bit LBAs

unsigned char VendorSpecific; //vendor specific code

unsigned short Interleave; //0x0000 = use vendor default

unsigned char Control;

} CB_FORMAT_UNIT;



Command Block (continued)

• Read (10) Example:

typedef struct _CB_READ10 {

unsigned char OperationCode; //must be 0x28

unsigned char RelativeAddress:1; // normally 0

unsigned char Resv:2;

unsigned char FUA:1; // 1=force unit access, don't use cache

unsigned char DPO:1; // 1=disable page out

unsigned char LUN:3; //logical unit number

unsigned long LBA; //logical block address (sector number)

unsigned char Reserved;

unsigned short TransferLength;

unsigned char Control;

} CB_READ10;



Command Block (continued)

• Some Common SCSI 

Commands:

FORMAT_UNIT=0x4, //required

INQUIRY=0x12, //required

MODE_SELECT6=0x15,

MODE_SELECT10=0x55,

MODE_SENSE6=0x1A,

MODE_SENSE10=0x5A,

READ6=0x08, //required

READ10=0x28, //required

READ12=0xA8,

READ_CAPACITY10=0x25, //required

READ_FORMAT_CAPACITIES=0x23,

REPORT_LUNS=0xA0, //required

REQUEST_SENSE=0x03, //required

SEND_DIAGNOSTIC=0x1D, //required

START_STOP_UNIT=0x1B,

SYNCHRONIZE_CACHE10=0x35,

TEST_UNIT_READ=0x00, //required

VERIFY10=0x2F,

WRITE6=0x0A, //required

WRITE10=0x2A,

WRITE12=0xAA



Command Status Wrapper

• Read Sense command can be used for details on failed operations

typedef struct _USB_MSI_CSW {

unsigned long dCSWSignature; //0x53425355

unsigned long dCSWTag; // associate CBW with CSW response

unsigned long dCSWDataResidue; // difference between requested 

data and actual

unsigned char bCSWStatus; //00=pass, 01=fail, 02=phase error, reset

} USB_MSI_CSW;



A Simple Duplicator (continued)
void BOMSFindDevice()

{

VOS_HANDLE hUsb2, hBoms;

usbhost_device_handle *ifDev2;

usbhost_ioctl_cb_t hc_iocb;

usbhost_ioctl_cb_class hc_iocb_class;

fat_context fatContext;

msi_ioctl_cb_t boms_iocb;

boms_ioctl_cb_attach_t boms_att;

// find BOMS class device

hc_iocb_class.dev_class = USB_CLASS_MASS_STORAGE;

hc_iocb_class.dev_subclass = USB_SUBCLASS_MASS_STORAGE_SCSI;

hc_iocb_class.dev_protocol = USB_PROTOCOL_MASS_STORAGE_BOMS;

hc_iocb.ioctl_code = VOS_IOCTL_USBHOST_DEVICE_FIND_HANDLE_BY_CLASS;

hc_iocb.handle.dif = NULL;

hc_iocb.set = &hc_iocb_class;

hc_iocb.get = &ifDev2;

if (vos_dev_ioctl(hUsb2, &hc_iocb) != USBHOST_OK)

{

// no BOMS class found

}

// now we have a device, intialise a BOMS driver for it

hBoms = vos_dev_open(VOS_DEV_BOMS);

// boms_attach

boms_att.hc_handle = hUsb2;

boms_att.ifDev = ifDev2;

boms_iocb.ioctl_code = MSI_IOCTL_BOMS_ATTACH;

boms_iocb.set = &boms_att;

boms_iocb.get = NULL;

if (vos_dev_ioctl(hBoms, &boms_iocb) != MSI_OK)

{

// could not attach to device

}

// device has been found and opened

// now detach from the device

boms_iocb.ioctl_code = MSI_IOCTL_BOMS_DETACH;

vos_dev_ioctl(hBoms, &boms_iocb)

}



A Simple Duplicator (continued)

VOS_DEVICE hBoms;

unsigned char fat_readSector(unsigned long sector, char *buffer)

{

// transfer buffer

msi_xfer_cb_t xfer;

// completion semaphore

vos_semaphore_t semRead;

unsigned char status;

vos_init_semaphore(&semRead, 0);

xfer.sector = sector;

xfer.buf = buffer;

// 512 byte sector specific to keep it simple

xfer.total_len = 512;

xfer.buf_len = 512;

xfer.status = MSI_NOT_ACCESSED;

xfer.s = &semRead;

xfer.do_phases = MSI_PHASE_ALL;

status = vos_dev_read(hBoms, (unsigned char *)&xfer, sizeof(msi_xfer_cb_t ), NULL);

If (status == MSI_OK)

{

status = FAT_OK;

}

else

{

status |= FAT_MSI_ERROR;

}

return status;

}



Creating an Image without a Computer

• Insert a drive to be imaged

• Attach a USB external hard drive (may require own power)

• An appropriate image file is automatically created on the hard drive



Computer Connected Microcontroller

• Capable of simple copy and image creation without attachment to a 

computer

• Interfaced to an Arduino board via SPI

– Arduino has become very popular thanks to ease of use

– Large number of Arduino libraries are available

– Arduino USB connection to PC is used for communication/control

• Accepts commands from the PC

• Provides status to the PC

• Allows guaranteed write-blocked access to the USB drive



• FTDI has released new VNC2-based Arduino clone: Vinculo

– Arduino form factor with additional row of pins

– Can use Arduino shields or expanded Vinculo shields

– Requires VNC2 Debug Module to program

– Forces one USB port to be a slave (for PC connection)

– Should be fairly easy to use as a write-blocker

– Interesting possibilities to interface with a VNC2 development module

• 3 USB hosts

• PC Connection

• 2 Microcontrollers 

• Could reduce source and destination confusion



References

• USB Complete: The Developers Guide (4th ed.) by Jan 
Axelson

• USB Mass Storage: Designing and Programming Devices 
and Embedded Hosts by Jan Axelson

• http://www.usb.org

• http://www.ftdichip.com

• Real Digital Forensics by Keith Jones, et. al

• Windows Forensic Analysis (2nd ed.) by Harlan Carvey

• http://www.arduino.cc

• File System Forensic Analysis by Brian Carrier

• All schematics and source code are available on request 
via e-mail to ppolstra@dbq.edu

http://www.usb.org/
http://www.ftdichip.com/
http://www.arduino.cc/


Questions?


