Undergraduate Degree Programs

Illinois Institute of Technology offers degree programs in the following areas of study.

College of Architecture
 Architecture (ARCH)

Armour College of Engineering
 Aerospace Engineering (AE)
 Architectural Engineering (ARCE)
 Biomedical Engineering (BME)
 Chemical Engineering (CHE)
 Civil Engineering (CE)
 Computer Engineering (CPE)
 Electrical Engineering (EE)
 Engineering Management (EMGT)
 Materials Science and Engineering (MSE)
 Mechanical Engineering (ME)

Center for Professional Development
 Industrial Technology and Management (INTM)
 Information Technology and Management (ISM)

Institute of Psychology
 Psychology (PSYC)

College of Science and Letters
 Applied Mathematics (AMAT)
 Biochemistry (BCHM)
 Biology (Biol)
 Chemistry (CHEM)
 Computer Information Systems (CIS)
 Computer Science (CS)
 Humanities (HUM)
 Journalism of Technology, Science and Business (JTSB)
 Molecular Biochemistry and Biophysics (MBB)
 Physics (PHYS)
 Political Science (PS)
 Professional and Technical Communication (PTC)

Stuart Business of Business
 Business Administration (BA)
 Business Administration and Applied Science (BAAS)

IIT offers graduate degree programs in areas of Architecture, Business, Design, Engineering, Financial Markets, Law, Mathematics and Science Education, Psychology, Public Administration, the Sciences, and Technical Communication. See the current IIT Bulletin: Graduate Programs for a detailed listing of graduate programs or visit the website www.grad.iit.edu. For descriptions of law programs and courses, see the Chicago-Kent College of Law Bulletin.

IIT offers Reserve Officer Training Corps (ROTC) programs designed to develop officers for the armed forces the Air Force, Army, Marines and Navy.

IIT offers programs leading to secondary education certification in science and mathematics.
Foreword for the IIT Undergraduate 2008-2010 Bulletin

Purpose of the IIT Undergraduate Bulletin

This bulletin describes the academic programs and resources, policies, procedures, and student services in effect at the time of publication. It is a primary source of information for undergraduate students, faculty, and administration.

General information regarding the history of the university, the setting of the campus, and campus life is also included. These sections can be used by prospective students and others to gain an understanding of the university as a whole.

The programs described in this bulletin are applicable to those students who enter IIT in the academic years 2008–2010. Students follow the programs described in the bulletin in effect at the time of their first registration.

Changes in programs and policies often occur before a new bulletin is published. A faculty advisor from the student’s major department is the best source for current curriculum information. The Office of Educational Services can refer students to the appropriate administrative office for current policies and procedures. Many policies in this bulletin are also found at registrar.iit.edu.

Illinois Institute of Technology is a multicultural community that values and respects its members. We take pride in the fact that our faculty, staff, and students come from various backgrounds and all parts of the world, and we welcome their diverse perspectives and contributions. It is our policy to provide a working and learning environment in which faculty, staff, and students are able to realize their full potential as productive members of the IIT community.

To this end, IIT affirms its commitment to equal opportunity and nondiscrimination in employment and education for all qualified individuals regardless of race, religion, color, national origin, gender, age, sexual orientation, gender identity, disability, applicable veteran status, or any other characteristic protected by applicable federal, state, or local law. Further, IIT is committed to taking affirmative action Affirmative Action to increase opportunities at all levels of employment and to increase opportunities for participation in programs and activities by all faculty, staff, and students.

Every member of the IIT community: faculty, staff, and student, is expected to cooperate fully in meeting these goals.

Any student, applicant, or employee of Illinois Institute of Technology who believes that he or she has received inequitable treatment because of discrimination violating IIT’s stated policy of equal opportunity in employment and in education should communicate, either in writing or in person, with the affirmative action officer, 224 Perlstein Hall, Illinois Institute of Technology.

For descriptions of graduate programs and courses, see the IIT Bulletin: Graduate Programs. For descriptions of law programs and courses, see the Chicago-Kent College of Law Bulletin.

The information in this bulletin is subject to change without notice. Changes will be duly published. See www.iit.edu.

Special thanks to:
- Faculty and administrators for timely contribution to the undergraduate bulletin
- Josh Tate, Chai Murti, and Tahniyath Fathima for LaTeX programming and database development
- Greg Welter, Melisa Lopez, Erin Mersch, and Gabrielle Smith among others for copy editing
- Carole Orze and April Welch for project management, cover photo, and layout
Table Of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>1</td>
</tr>
<tr>
<td>Calendar</td>
<td>3</td>
</tr>
<tr>
<td>IIT Profile</td>
<td>4</td>
</tr>
<tr>
<td>Admission, Financial Aid, and Expenses</td>
<td>9</td>
</tr>
<tr>
<td>Undergraduate Admission</td>
<td>10</td>
</tr>
<tr>
<td>Undergraduate Reinstatement</td>
<td>15</td>
</tr>
<tr>
<td>Financial Aid</td>
<td>16</td>
</tr>
<tr>
<td>Expenses</td>
<td>22</td>
</tr>
<tr>
<td>Academic Programs</td>
<td>25</td>
</tr>
<tr>
<td>Undergraduate Curricula</td>
<td>26</td>
</tr>
<tr>
<td>Departmental Curricula</td>
<td>28</td>
</tr>
<tr>
<td>Minors</td>
<td>156</td>
</tr>
<tr>
<td>Special Programs</td>
<td>159</td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>167</td>
</tr>
<tr>
<td>Academic Policies and Procedures</td>
<td>241</td>
</tr>
<tr>
<td>Campus Resources</td>
<td>251</td>
</tr>
<tr>
<td>Officers and Faculty</td>
<td>259</td>
</tr>
<tr>
<td>Board of Trustees</td>
<td>260</td>
</tr>
<tr>
<td>Administration</td>
<td>262</td>
</tr>
<tr>
<td>Faculty</td>
<td>269</td>
</tr>
<tr>
<td>Faculty Emeriti</td>
<td>282</td>
</tr>
<tr>
<td>Maps and Directions</td>
<td>284</td>
</tr>
<tr>
<td>Index</td>
<td>287</td>
</tr>
</tbody>
</table>
IIT Academic Calendar for Fall

<table>
<thead>
<tr>
<th>Event</th>
<th>Fall 2008</th>
<th>Fall 2009</th>
<th>Fall 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Day for Reinstatement</td>
<td>Aug 5</td>
<td>Aug 4</td>
<td>Aug 3</td>
</tr>
<tr>
<td>Registration & Orientation Period</td>
<td>Aug 18-20</td>
<td>Aug 17-19</td>
<td>Aug 16-18</td>
</tr>
<tr>
<td>Classes Begin</td>
<td>Aug 21</td>
<td>Aug 20</td>
<td>Aug 19</td>
</tr>
<tr>
<td>Last Day to Register, Add, Change</td>
<td>Aug 29</td>
<td>Aug 28</td>
<td>Aug 27</td>
</tr>
<tr>
<td>Labor Day Holiday</td>
<td>Sept 1</td>
<td>Sept 7</td>
<td>Sept 6</td>
</tr>
<tr>
<td>Last Day to Submit Appl. for Grad.</td>
<td>Sept 5</td>
<td>Sept 4</td>
<td>Sept 3</td>
</tr>
<tr>
<td>Last Day to Remove “I” Grades</td>
<td>Oct 3</td>
<td>Oct 2</td>
<td>Oct 1</td>
</tr>
<tr>
<td>Fall Break</td>
<td>Oct 16-18</td>
<td>Oct 15-17</td>
<td>Oct 14-16</td>
</tr>
<tr>
<td>Last Day for Official Withdrawal</td>
<td>Oct 31</td>
<td>Oct 30</td>
<td>Oct 29</td>
</tr>
<tr>
<td>Advising Period</td>
<td>Nov 3-14</td>
<td>Nov 2-13</td>
<td>Nov 8-19</td>
</tr>
<tr>
<td>Registration Begins</td>
<td>Nov 10</td>
<td>Nov 16</td>
<td>Nov 15</td>
</tr>
<tr>
<td>Thanksgiving Holiday</td>
<td>Nov 27-29</td>
<td>Nov 26-28</td>
<td>Nov 25-27</td>
</tr>
<tr>
<td>Classes End</td>
<td>Dec 6</td>
<td>Dec 5</td>
<td>Dec 4</td>
</tr>
<tr>
<td>Final Exam Period</td>
<td>Dec 8-13</td>
<td>Dec 7-12</td>
<td>Dec 6-11</td>
</tr>
</tbody>
</table>

* Dates subject to change. See registrar.iit.edu for current information.

IIT Academic Calendar for Spring

<table>
<thead>
<tr>
<th>Event</th>
<th>Spring 2009</th>
<th>Spring 2010</th>
<th>Spring 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration and Orientation Period</td>
<td>Jan 12-15</td>
<td>Jan 11-14</td>
<td>Jan 10-13</td>
</tr>
<tr>
<td>MLK Jr. Holiday</td>
<td>Jan 19</td>
<td>Jan 18</td>
<td>Jan 17</td>
</tr>
<tr>
<td>Classes Begin</td>
<td>Jan 20</td>
<td>Jan 19</td>
<td>Jan 18</td>
</tr>
<tr>
<td>Last Day to Register, Add, Change</td>
<td>Jan 27</td>
<td>Jan 26</td>
<td>Jan 25</td>
</tr>
<tr>
<td>Last Day to Submit Appl. for Grad.</td>
<td>Jan 30</td>
<td>Jan 29</td>
<td>Jan 28</td>
</tr>
<tr>
<td>Last Day to Remove “I” Grades</td>
<td>Feb 27</td>
<td>Feb 26</td>
<td>Feb 25</td>
</tr>
<tr>
<td>Spring Break</td>
<td>Mar 16-21</td>
<td>Mar 15-20</td>
<td>Mar 14-19</td>
</tr>
<tr>
<td>Last Day for Official Withdrawal</td>
<td>Apr 3</td>
<td>Apr 2</td>
<td>Apr 1</td>
</tr>
<tr>
<td>Advising Period</td>
<td>Apr 13-24</td>
<td>Apr 12-23</td>
<td>Apr 11-22</td>
</tr>
<tr>
<td>Registration Begins</td>
<td>Apr 20</td>
<td>Apr 19</td>
<td>Apr 25</td>
</tr>
<tr>
<td>Classes End</td>
<td>May 9</td>
<td>May 8</td>
<td>May 7</td>
</tr>
<tr>
<td>Final Exam Period</td>
<td>May 11-16</td>
<td>May 10-15</td>
<td>May 9-14</td>
</tr>
<tr>
<td>Commencement Ceremony</td>
<td>May 16</td>
<td>May 16</td>
<td>May 14</td>
</tr>
</tbody>
</table>

* Dates subject to change. See registrar.iit.edu for current information.

IIT Academic Calendar for Summer

<table>
<thead>
<tr>
<th>Event</th>
<th>Summer 2009</th>
<th>Summer 2010</th>
<th>Summer 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Day for Reinstatement</td>
<td>May 13</td>
<td>May 19</td>
<td>May 18</td>
</tr>
<tr>
<td>Registration and Orientation Period</td>
<td>May 27-28</td>
<td>June 2-3</td>
<td>June 1-2</td>
</tr>
<tr>
<td>Classes Begin</td>
<td>June 1</td>
<td>June 7</td>
<td>June 6</td>
</tr>
<tr>
<td>Last Day to Register, Add, Change</td>
<td>June 2</td>
<td>June 8</td>
<td>June 7</td>
</tr>
<tr>
<td>Last Day to Submit Appl. for Grad.</td>
<td>June 5</td>
<td>June 11</td>
<td>June 10</td>
</tr>
<tr>
<td>Independence Day Holiday</td>
<td>July 3-4</td>
<td>July 3-5</td>
<td>July 2-4</td>
</tr>
<tr>
<td>Last Day for Official Withdrawal</td>
<td>July 10</td>
<td>July 16</td>
<td>July 15</td>
</tr>
<tr>
<td>End of Eight-Week Session</td>
<td>July 25</td>
<td>July 31</td>
<td>July 30</td>
</tr>
</tbody>
</table>

* Dates subject to change. See registrar.iit.edu for current information.
IIT Profile

Colleges of Illinois Institute of Technology

Armour College of Engineering

Office of the Dean
220 Engineering 1 Building
10 W. 32nd Street
Chicago, IL 60616
312.567.3009
For current information see:
www.engineering.iit.edu

Armour College is named for IIT’s predecessor, Armour Institute of Technology, which was established in 1892 on the site of the present IIT Main Campus.

The following departments comprise Armour College: Biomedical Engineering; Chemical and Biological Engineering; Civil, Architectural and Environmental Engineering; Electrical and Computer Engineering; and Mechanical, Materials and Aerospace Engineering.

College of Architecture

Donna V. Robertson, FAIA
Dean, John H. and Jeanne M. Rowe Chair
S.R. Crown Hall
3360 S. State Street
Chicago, IL 60616
312.567.3230
www.arch.iit.edu

The program in architecture was established at Armour Institute of Technology, one of IIT’s predecessors, in 1895. In 1938, the program came under the directorship of the world-renowned architect and educator Ludwig Mies van der Rohe. The College is housed in S.R. Crown Hall, a National Historic Landmark, one of Mies’ most significant buildings, and a major contribution to Chicago’s rich architectural heritage. The College emphasizes applied studio work under the tutelage of a faculty of practicing architects; the study of architectural theory; interdisciplinary learning; digital technologies; sustainability; design/build; and international study.

College of Science and Letters

R. Russell Betts
Dean
125 Engineering 1 Building
10 W. 32nd St.
Chicago, IL 60616
312.567.3800
www.iit.edu/~csl

The following departments are in the College of Science and Letters: Applied Mathematics; Biological, Chemical and Physical Sciences; Computer Science; Lewis Department of Humanities; Mathematics and Science Education; and Social Sciences.

Institute of Psychology

M. Ellen Mitchell, Ph.D.
Dean
252 Life Sciences Building
3105 S. Dearborn St.
Chicago, IL 60616
312.567.3500
www.iit.edu/psych

Established in 1995, the Institute of Psychology is noted for its applied graduate programs in clinical, industrial/organizational, and rehabilitation psychology. It offers an undergraduate program that is focused on psychology as a science linked to the professions. The B.S. degree in psychology has three optional specialty tracks from which to choose: Culture, Conflict, and International Relations; Psychology of Emerging Technologies; and the Human Environment.
Stuart School of Business

Harvey Kahalas
Dean
Downtown Campus
565 W. Adams St.
Chicago, IL 60661
312.906.6500
www.stuart.iit.edu

The Stuart School of Business was established in 1969 with a gift from IIT alumnus and Chicago financier Harold Leonard Stuart. The School places an emphasis on the relation between business and technology and cross-disciplinary education. Stuart offers AACSB-accredited undergraduate programs (BSBA and BSBA and Applied Science). Its graduate programs include the Master of Business Administration (MBA), Master of Science in Environmental Management and Sustainability, Master of Science in Finance, Master of Science in Marketing Communications, and a JD/MBA, and an MS Design/MBA. The School houses the Center for Financial Markets, the Center for Strategic Competitiveness, the Center for Sustainable Enterprise, and the Center for Management of Medical Technology.

Center for Professional Development

C. Robert Carlson
Director
Daniel F. and Ada L. Rice Campus
201 East Loop Road
Wheaton, IL 60187
630.682.6000
www.iit.edu/cpd

The Center for Professional Development (CPD) offers technology-oriented training and education for working professionals. Courses are taught by IIT professors and industry professionals with significant working, teaching, and research experience in their fields. The CPD offers education and training in a wide variety of formats including degree, non-degree, certificate, credit, and non-credit programs; corporate training; short courses; and seminars ranging from a few hours to several days in length. Completion of all CPD non-credit courses will result in the assignment of Continuing Education Units (CEU) fully accredited by the International Association for Continuing Education and Training (IACET).

The Center for Professional Development offers undergraduate degree programs in Information Technology and Management and Industrial Technology and Management; graduate programs in Information Technology and Management and Industrial Technology and Operations; an undergraduate certificate in Computer and Network Security Technologies; Professional Engineer (PE)/Engineering Intern (EI) Review courses and continuing education courses for Professional Engineers; and a wide variety of non-credit semester-length and short courses in all disciplines.
IIT Profile

Institute of Design

Patrick F. Whitney
Dean
Fourth Floor
350 N. LaSalle St.
Chicago, IL 60610
312.595.4900
www.id.iit.edu

Since its founding as the New Bauhaus in 1937, the IIT Institute of Design (www.id.iit.edu) has grown into the largest full-time graduate-only design program in the U.S. with over 150 students from around the world. The school offers professional Master of Design degrees in communication design, interaction design, product design and development, strategic design, systems, thinking, and use research; a dual Master of Design/MBA degree program with the IIT Stuart School of Business; and the Master of Design Methods, a nine-month executive program in design methods for innovation. The Institute of Design also offers a Ph.D. in design, the country’s first such program, created in 1991.

Chicago-Kent College of Law

Harold J. Krent
Dean
Downtown Campus
565 W. Adams St.
Chicago, IL 60661
312.906.5000
www.kentlaw.edu

Chicago-Kent College of Law is the second oldest law school in Illinois. When it joined the university in 1969, IIT became the first major institute of technology to include law among its disciplines.

Chicago-Kent offers programs leading to the degrees of Juris Doctor and Master of Laws, and participates in joint-degree programs with the Stuart School of Business and the Graduate Program in Public Administration.

Graduate College

Ali Cinar
Dean
301 Main Building
3300 S. Federal St.
Chicago, IL 60616
312.567.3024
www.grad.iit.edu

The Graduate College coordinates the programs of advanced study offered by the academic units of the university. The college consists of the following offices: Office of the Dean/Vice Provost for Research; Office of Sponsored Research and Programs; Office of Research Compliance and Proposal Development; Office of Technology Transfer and Intellectual Property; Graduate Academic Affairs; IIT Online Client and Student Support Services; Outreach; Office of the Director of the Rice Campus; Center for Professional Development; and the Office of Editorial Assistance (Thesis Examiner). The dean chairs the Graduate Studies Committee and the Research Council, sets minimum standards for graduate students, represents the university in national forums for graduate education, and serves as an advocate for promoting graduate education across the university.
Accreditation

IIT is accredited by the Higher Learning Commission of the North Central Association of Colleges and Schools.

Commission URL:
www.ncahigherlearningcommission.org
Commission Telephone: 312.263.0456

IIT History and Campuses

IIT’s traditions span more than a century of innovation and educational leadership. IIT came into being in 1940 with the merger of Armour Institute of Technology (founded in 1892) and Lewis Institute (founded in 1896).

Today, the university has several campuses and offers degree programs through the College of Architecture, Armour College of Engineering, Chicago-Kent College of Law, Institute of Design, Center for Professional Development, Institute of Psychology, College of Science and Letters, and Stuart School of Business.

The 120-acre Main Campus is located three miles south of the central business district in Chicago, and is internationally known for its architecture. The Master Plan of the campus and many of its 50 buildings were developed by Ludwig Mies van der Rohe, one of the 20th century’s most influential architects.

IIT’s Downtown Campus, at 565 W. Adams St. in the West Loop business district, houses the Chicago-Kent College of Law, Stuart School of Business, and the Master of Public Administration program. A shuttle bus provides transportation between the Main and Downtown campuses.

The Institute of Design, 350 N. LaSalle St., is in an outstanding downtown location and state-of-the-art facility.

The Daniel F. and Ada L. Rice Campus, at 201 E. Loop Road in Wheaton, Ill., is IIT’s west-suburban location. Graduate and upper-division undergraduate courses and degree programs are available at the Rice Campus with evening and Saturday classes and via courses broadcast live through IIT Online.

The Center for Professional Development offers degree programs in information technology and management, industrial technology and management, non-credit short courses, and information technology training programs.

IIT Online delivers courses via the Internet and also links classroom studios on campus with remote TV receiving sites. IIT Online’s talk-back feature permits students in receiving classrooms to participate in class discussions. IIT has more than 20 receiving sites throughout the Chicago area.

Moffett Campus, in southwest-suburban Summit-Argo, houses the National Center for Food Safety and Technology (NCFST), a multidisciplinary food safety research facility, which is funded by the U.S. Food and Drug Administration and the food industry. Established with a gift from CPC International, Inc., the campus has enabled the university to develop academic programs in food safety and technology. Courses leading to masters’ degrees and certificate programs in food safety and technology and in food process engineering are offered at this facility.
IIT Profile

A Snapshot of the IIT Community

Enrollment (Fall 2007)

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>2,576 students</td>
</tr>
<tr>
<td>Graduate</td>
<td>3,714 students</td>
</tr>
<tr>
<td>Law</td>
<td>1,119 students</td>
</tr>
<tr>
<td>Total</td>
<td>7,409 students</td>
</tr>
</tbody>
</table>

Student Demographics

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>66%</td>
</tr>
<tr>
<td>Female</td>
<td>34%</td>
</tr>
<tr>
<td>Minority*</td>
<td>17%</td>
</tr>
<tr>
<td>International</td>
<td>37%</td>
</tr>
<tr>
<td>Countries of Origin</td>
<td>123</td>
</tr>
<tr>
<td>Student/Faculty Ratio</td>
<td>13:1</td>
</tr>
</tbody>
</table>

Degrees Awarded 2006-2007

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor</td>
<td>422</td>
</tr>
<tr>
<td>Master and Professional Master</td>
<td>1008</td>
</tr>
<tr>
<td>Law</td>
<td>361</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>73</td>
</tr>
<tr>
<td>Total</td>
<td>1,864</td>
</tr>
</tbody>
</table>

* Includes African American, Asian American, Hispanic American, and Native American.
Admission, Financial Aid, and Expenses
Undergraduate Admission

Classification of Students

The Office of Undergraduate Admission is responsible for admission decisions for all first-year (freshmen and transfer), full-time and part-time, non-degree and degree-seeking, special status, and summer transfer students. To be full-time, a student must register for 12 or more credit hours each semester.

Students should contact:

Office of Undergraduate Admission
10 W. 33rd St.
Perlstein Hall 101
Chicago, IL 60616
Telephone: 312.567.3025
Outside Chicago: 1.800.448.2329
Fax: 312.567.6939
E-mail: admission@iit.edu
Online application: apply.iit.edu

Application as a Freshman

Students submitting a complete application by the Early Action I application deadline of November 5th will be notified after December 5th. The Early Action II application deadline is January 7th with notification beginning February 7th. Once Early Action deadlines have passed, admission decisions will be made on a rolling basis. Architecture applicants must adhere to the Early Action deadlines since space is limited.

Special programs and scholarships have specific deadlines and supplemental applications. See admission.iit.edu for details.

Students have until May 1 (National Candidates’ Reply Date) to accept IIT’s offer of admission. Students admitted after May 1 will have two weeks from the receipt of their admission and/or financial aid award letters to respond to IIT’s offer. To accept IIT’s offer of admission, a student must return the Enrollment Form, which is sent to every admitted student, and a non-refundable matriculation deposit by the above dates. The deposit will be applied to the cost of attendance.

Obtaining Freshman Application

Freshman applicants must submit a completed application, transcripts from all high schools attended, transcripts of all colleges attended (when applicable), standardized test scores (ACT or SAT I), and a letter of recommendation. International students should see additional requirements in the International Student Section. The freshman application may be obtained by contacting the Office of Undergraduate Admission or visiting apply.iit.edu.

Standardized Test Scores for Freshman Applicants

All students are required to submit scores from either the College Entrance Examination Board’s Scholastic Aptitude Test (SAT I Reasoning) or the American College Test (ACT). The tests may be taken at any time, but preferably early in the high school senior year. Applicants for the spring semester (all majors, but architecture) must have taken the SAT I or ACT by the preceding November. IIT will consider SAT II tests in math and science, but does not require them for admission or scholarship applications.
High School Requirements for Freshman Applicants

Graduates from an accredited high school applying for admission must present evidence that they have completed a minimum of 16 units of high school work. Most admitted students exceed this minimum. A unit may be defined broadly as the study of a major subject for one academic year in high school.

REQUIRED:
- 4 years of English
- 4 years of mathematics, including precalculus
- 3 years of science, including 2 years of lab

RECOMMENDED:
- 2 years of social sciences
- Computer and technology courses
- 2 years of foreign language

Transfer of College-Level Credit for Freshman Applicants

Advanced Placement Examinations

IIT will award credit for CEEB Advanced Placement Examinations. Credit will vary by test score. A complete list of acceptable AP scores and IIT course equivalents may be found at www.iit.edu/~edserve/apcredit.

International Baccalaureate Program

Students holding an International Baccalaureate (I.B.) diploma or who have successfully completed I.B. examinations may be awarded credit according to the following policies. College credit will be awarded for higher-level (HL) exams with a score of “4” or better. A maximum of 10 hours of credit for each HL exam can be awarded. No credit is granted for work completed at the subsidiary level (SL). Scores should be sent to the Office of Undergraduate Admission.

General Certificate of Education Examination - Advanced Level

College credit will be awarded for GCE A-level examinations with a grade of A, B, C, D, and E. A maximum of 10 hours of credit can be awarded for each A-level examination. No credit will be granted for advanced subsidiary level examinations.

College Coursework

IIT will accept college coursework taken while still in high school from other accredited universities and colleges, provided that the courses are comparable in nature, content and level to those offered at IIT. Grades must be equivalent to a “C” or higher. Grades of “C-“ are not acceptable for transfer credit. A maximum of 36 applicable semester hours will be accepted. Transcripts of all college work are required to be submitted as part of the application for admission to the Office of Undergraduate Admission, regardless of the transferability of credits.
Undergraduate Admission

Placement Testing

Placement testing is done prior to first enrollment. For students entering in the fall semester, placement tests are scheduled in the summer preceding matriculation. For students entering in the spring semester, placement tests are scheduled immediately preceding matriculation. Placement tests are only used for placing students into the appropriate courses. Test results do not appear on the student’s official academic record and no academic credit is awarded.

Students are required to take up to three placement exams.
- All new freshman and transfer students who have neither Advanced Placement credit nor transfer credit for MATH 151 - Calculus I are required to take the mathematics placement test.
- All new freshman and transfer students who have neither Advanced Placement credit nor transfer credit for COM 101 - University Writing are required to demonstrate writing proficiency in one of two ways. They may either pass the writing placement exam prior to enrollment or receive a “C” or better in COM 101 during their first year of attendance.
- Students in chemical engineering who have neither Advanced Placement credit nor transfer credit for CHEM 124 - General Chemistry are required to take the chemistry placement test.

Full-Time Transfer Admission

Application as a Transfer Student

The Office of Undergraduate Admission is responsible for admission decisions for full-time transfer students. Full-time status requires that students enroll in a minimum of 12 credit hours each semester. Transfer students may apply for the fall or spring term in all majors except architecture, which is a fall-entry program only. See admission.iit.edu for deadlines.

Obtaining an Application

The transfer application may be obtained by contacting the Office of Undergraduate Admission or visiting apply.iit.edu.

Students must submit the IIT Transfer Application, transcripts from all colleges and universities attended, a personal statement, and a letter of recommendation to the Office of Undergraduate Admission.

International Students should see additional requirements in the International Student Section.

Requirements for Transfer

Transfer applicants must be in good academic standing at their previous college(s) to be considered for admission to IIT. Admission is based upon a cumulative GPA and individual grades in all classes that apply to the major selected. A minimum cumulative GPA of 3.0 is recommended for transfer consideration. Students on academic probation, or who have been dismissed for academic or other reasons, will not be considered for transfer. Students must also be in good financial standing at all previous colleges attended.

Transfer applicants with fewer than 30 hours of transferable graded college coursework must submit high school transcripts and SAT I or ACT scores as part of their application.
Transfer Credit

Official credit evaluations are completed only after a student is admitted to IIT.

Courses may be acceptable for transfer from accredited colleges and universities, provided they are comparable in nature, content and level to those offered at IIT. Credit may also be accepted, based on appropriate documentation, test scores, and agency recommendations for CLEP (see page 244), Dantes, and military experience. IIT, however, does not grant credit for vocational courses or life/work experience. In addition, technology courses will not be accepted in any engineering program.

A maximum of 68 applicable semester hours of transfer credit is permitted from a two-year college. There is no maximum number of hours of transfer credit from a four-year college; however, the final 45 semester hours of any degree program must be completed at IIT (see page 248). Transfer credit will be accepted for courses completed with the equivalent of a grade “C” or better. A grade of “C-” is not acceptable for transfer credit. In certain instances, the academic department must approve transfer credit if a long period of time has elapsed since the course was completed.

Transfer articulation agreements that list course equivalents are available for most two-year Chicago-area colleges from the Office of Educational Services and online at www.iit.edu/~edserve/services.html#transcred.

Acceptance of Transfer Admission

To accept IIT’s offer of admission, a student must return the Enrollment Form and a non-refundable $300 matriculation deposit.

The deposit is credited to the student’s account and will go toward the cost of attendance. The Enrollment Form is sent to every admitted student.

International Students

International students are those who are neither citizens nor permanent residents of the United States.

Though the required admission documents can vary depending upon individual circumstances, all international applicants must submit a completed application for admission, official transcripts in the native language, certified copy in English translation of all transcripts, TOEFL or IELTS scores, and an affidavit of financial support. Please read appropriate application requirements for freshman or transfer students.

Prospective applicants should read carefully the description of requirements included with the printed application for admission or on the IIT website that provides the online application: apply.iit.edu.

Immunization Requirement for New Students

In accordance with Illinois law, all students born on or after January 1, 1957, and enrolling at IIT for the first time after July 1, 1989, must supply health-provider documentation of vaccination for diphtheria, tetanus, measles, rubella, and mumps. Transfer students are considered first time enrolled students. Those students enrolling for the first time during a summer session may be permitted to enroll in the subsequent fall term before providing proof of immunization. Students who wish to enroll only in one class per semester or via IIT Online at corporate sites may file a written request for an exemption. Exemption from one or more of the specific requirements may also be granted based on documented medical or religious reasons. A student who does not provide acceptable documentation of immunization will be prevented from registering for classes in the next semester. Questions regarding the immunization policy should be directed to IIT’s Student Health Center at 312.808.7100.
Part-Time Students

Students who wish to enroll in fewer than 12 credit hours per semester are classified as part-time students. All undergraduate programs, except architecture, can be completed on a part-time basis, with both day and evening courses being offered. The majority of courses in the following degree programs can be completed through evening classes:

- Chemical Engineering
- Information Technology
- Industrial Technology and Management

The graduation requirements for full- and part-time students are identical.

Application as a Degree-Seeking Part-Time Student

Part-time students must meet the same admission requirements as full-time students. Students with previous college work will be evaluated by the same criteria used for full-time undergraduate transfer admission (see page 12). Students who have fewer than 30 hours of transferable college coursework must submit high school transcripts and standardized test scores.

Students who have not attended college must meet the high school requirements (see page 11) and must submit high school transcripts and standardized test scores.

Application as a Non-Degree-Seeking Student

Applicants who are taking courses for the following reasons will be limited to part-time enrollment.

- taking courses for professional development
- taking courses prior to being admitted to a graduate program
- taking courses to transfer to another institution

A non-degree-seeking student must be admitted to IIT. Admission is based on prerequisite coursework or other preparation necessary for the intended course. Non-degree seeking students follow the same application procedures as part-time degree-seeking students.

Campus Locations for Part-Time Students

Part-time students can take courses at either the Main Campus or the Daniel F. and Ada L. Rice Campus in Wheaton, a Chicago suburb. The Main Campus has the most extensive offering of day and evening classes. The Rice Campus offers evening classes, most of which start at 6:25 p.m. The majority of undergraduate courses taught at the Rice Campus are 300- and 400-level courses both in information technology and management and in industrial technology and management.

IIT Online, which is IIT’s distance education unit delivering courses via Internet and IITV (a live interactive system linking classrooms with remote TV receiving sites), is another option for the part-time student. However, no full degree program may be completed entirely online. For additional information, visit www.iit-online.iit.edu.

Summer School Admission

Students who attend another college or university and wish to enroll for summer courses at IIT with the intention of transferring the credits to their home institution must submit the following to the IIT Office of Undergraduate Admission:

- a Summer School Application
- a transcript and/or a letter of good standing that indicates completion of the prerequisites for the requested course(s) at IIT.

Additionally, students should check with their home institutions to determine the equivalencies for specific courses and the policies and procedures required to transfer IIT courses.
Reinstatement of Undergraduate Students

Former IIT students who wish to re-enter IIT as a full-time or part-time undergraduate student must contact the Office of Educational Services (www.iit.edu/~edserve) for an Application for Undergraduate Reinstatement. No fee is required. The application and all supporting documents must be submitted before the deadline specified on the IIT Calendar (see page 3). Students must submit official transcripts from all college and universities attended since last enrolled at IIT.

International students with a student visa requesting reinstatement must contact the International Center in addition to submitting the application for reinstatement.
Financial Aid

Comprehensive Financial Aid Program

IIT administers a comprehensive financial aid program, which includes federal, state and institutional funds for full and part-time undergraduate students. Federal programs include grants, loans and work-study employment. State programs include grant and scholarship funds. Most federal and state funds are based on demonstrated financial need, with the exception of merit scholarships. Institutional funds include need-based grants and loans, as well as merit scholarships based on academic, athletic and service achievements. IIT uses the formula established by the U.S. Congress to determine financial need for assistance. IIT offers limited academic scholarship assistance to international students.

Determining Financial Need For Assistance

Financial need is the difference between a student’s total annual cost of attending IIT and the amount the student and the student’s family is expected to contribute toward that cost of education. The total cost of attendance at IIT includes tuition and mandatory fees, room and board, books and supplies, transportation, and personal expenses. The amount that the student and family is expected to contribute is called the expected family contribution (EFC). The U.S. Congress has established the formula used to calculate the EFC. The EFC is subtracted from the cost of attendance, and what is left over is considered to be the demonstrated need for financial assistance. One of the principles of need-based assistance is that students and their families are expected to help pay some of the cost of education.

Student Eligibility Requirements to Receive Financial Assistance

Students must be U.S. citizens or eligible non-citizens and be enrolled in a degree-seeking program for at least half-time (six credit hours or more per semester) and demonstrate reasonable academic progress toward graduation.

Application Process

All students applying for financial assistance need to complete the Free Application for Federal Student Aid (FAFSA). This application is available beginning January 1 of the academic year in which the student plans to attend. The IIT Title IV School Code is 001691. The priority date for financial aid consideration at IIT is April 15. All financial assistance is awarded on an annual basis. Students should be aware that a FAFSA must be filed each academic year. The amount of financial aid that a student receives each year depends on demonstrated financial need and the availability of funds. Students applying for financial aid will be required to submit tax information upon request.

Freshman Students

The Free Application for Federal Student Aid (FAFSA) for freshmen entering IIT is available from high schools, IIT’s Office of Undergraduate Admission, Office of Financial Aid, or online at www.fafsa.ed.gov. The priority date for financial aid consideration is April 15; therefore, new students should not wait for a final admission decision before filing the FAFSA. International students do not submit a FAFSA.
Transfer Students

All new transfer students will file either a renewal or an original FAFSA. The priority date for financial aid consideration is April 15; therefore, new transfer students should not wait for a final admission decision before filing the FAFSA.

Continuing Students

All continuing students must submit either a renewal or original FAFSA to the U.S. Department of Education by April 15, which is the priority date for financial aid consideration. FAFSAs are available online at www.fafsa.ed.gov.

Federal Financial Aid Programs

Federal Pell Grant

A Federal Pell Grant is a federal grant that does not have to be repaid. Pell Grants are awarded only to undergraduate students who have not earned a bachelor’s or professional degree. Pell Grants are awarded based on demonstrated financial need. Students apply for a Pell Grant by filing the FAFSA. All students who file the FAFSA receive a Student Aid Report (SAR). If a student does not qualify for a Pell Grant, he or she may still be eligible for other forms of financial aid. Students can designate IIT as a SAR recipient by using the code 001691 in Section 5 of the FAFSA.

Federal Supplemental Educational Opportunity Grant (FSEOG)

An FSEOG is a federal grant that does not have to be repaid. This grant is for undergraduate students who demonstrate exceptional financial need. Students apply for the FSEOG by filing the FAFSA. IIT strongly encourages all students who wish to be considered for SEOG to submit the FAFSA to the Department of Education by the April 15th deadline. These awards are limited and awarded on a first-come, first-served basis.

ACG–Academic Competitive Grant

The ACG grant is a federal grant that does not have to be repaid. This grant is for first and second year undergraduate students. This program assists students who demonstrate eligibility for the Pell Grant program. Students must complete a rigorous secondary-school program and maintain full-time status. Students apply for the ACG by filing the FAFSA.

SMART–The National Science and Mathematics to Retain Talent Grant

The SMART grant is a federal grant that does not have to be repaid. This grant is for third and fourth year students who demonstrate Pell Grant eligibility. Students must major in one of the approved majors to be considered for this grant. Students must apply for the SMART grant by filing the FAFSA.
Financial Aid

Federal Perkins Loan

A Federal Perkins Loan is a low-interest (5 percent) federal loan for undergraduate students with exceptional financial need. IIT is the lender and the loan is made with government funds. There is no interest charged while the student is attending school. When a student leaves school or drops below half-time attendance, there is a nine-month interest-free grace period before the student begins repayment. All repayments are made to IIT. Students apply for a Perkins Loan by filing the FAFSA. Students who wish to be considered for the Federal Perkins program are strongly encouraged to submit the FAFSA to the Department of Education by the April 15th deadline. These awards are limited and awarded on a first-come, first-served basis.

Federal Work Study Program (FWSP)

The FWSP provides salaries for jobs for undergraduate and graduate students with demonstrated financial need. Students awarded FWSP funds can earn money to help pay education expenses. Students can work either on- or off-campus. Off-campus jobs will be with private, non-profit organizations or public agencies that encourage community service work. Students awarded FWS are paid at least the current federal minimum wage or higher, depending on the type of work performed. Students are paid by the hour and receive a paycheck. FWS students should not work more than 20 hours per week during the academic year and may not work during their scheduled class times. Students apply for FWS by filing the FAFSA. On-campus jobs are advertised at www.cdc.iit.edu. Off-campus jobs are also advertised by the Career Management Center. Additionally, this office assists students in finding summer employment and permanent jobs after graduation.

Federal Family Education Loan Program (FFELP)

The FFELP loan program includes the Stafford subsidized and unsubsidized loan programs for undergraduate and graduate students, as well as the Parent Loan for Undergraduate Students (PLUS) Program. The Stafford Loan Program provides low-interest loans to assist students with paying educational costs. Interest rates are determined each year on July 1st. Students with a previous loan will continue to have a variable interest rate. The interest rate will change annually on July 1, with a maximum of 8.25 percent. These loans must be repaid over a period of time after a student leaves school. The funds for these loans come from banks, credit unions or other participating lenders.

Federal Stafford Loans (Subsidized and Unsubsidized)

The Subsidized Stafford Loan is awarded based on demonstrated financial need and students do not pay interest on the principal while they are in school. The Unsubsidized Stafford Loan is not awarded based on demonstrated financial need; however, interest is charged from the time that the loan funds are disbursed to the student. Students have the option of paying the interest or having the interest added onto the principal. Fees of up to 3 percent are charged on each loan and these fees are deducted before a student receives the loan funds.

Federal PLUS Loans

PLUS loans enable parents with a good credit history to borrow money to help pay educational expenses for their dependent undergraduate student. The interest rate is set on July 1 and is fixed. Students apply for all FFELP loans by filing the FAFSA.
Illinois Student Assistance Commission (ISAC) Financial Aid Programs

Monetary Award Program (MAP)

This program is for undergraduate Illinois residents and provides state grants that do not have to be repaid. To receive a MAP grant, a student must demonstrate financial need, be a resident of Illinois, and be enrolled at an Illinois institution. The MAP grant can only be applied toward tuition and mandatory fees. A student can receive the MAP grant for up to a maximum of 135 credit hours. Students apply for the MAP grant by filing the FAFSA. To receive the maximum grant amount, students must be enrolled in 15 credit hours.

Merit Recognition Scholarship (MRS)

The MRS program provides a one-time $1,000 state grant to qualified Illinois high school students who rank in the top 5 percent of their class at the end of the seventh semester in high school. Demonstrated financial need is not a factor in determining MRS recipients. The top 5 percent of seniors from all Illinois high schools are automatically considered for the MRS program. Once ISAC selects all eligible recipients, an MRS application is sent to the student. The student completes the application and submits it to the IIT Office of Financial Aid.

Silas Purnell Illinois Incentive for Access Grant (IIA)

The IIA Program provides a one-time state grant of up to $500 for freshmen who have an expected family contribution (EFC) of zero, which is determined by filing the FAFSA. A student must be enrolled at least half-time in an Illinois institution, be an Illinois resident, and have not yet received a bachelor’s degree.

IIT Financial Aid Programs

Most IIT students receive some form of financial assistance. All students who submit a FAFSA are considered for all federal, state and institutional financial aid for which they qualify. IIT grants and most loans are awarded on the basis of demonstrated financial need. In addition, each year a number of talented students receive IIT scholarships that are based on merit. All IIT scholarships may be adjusted upon a student receiving federal and/or state grant funding.

The Office of Admission initially awards IIT scholarships and the Office of Financial Aid administers renewals of the awards. Generally these scholarships are renewable for four years and only apply to undergraduate students who maintain full-time status in undergraduate degree programs. Full-time status is defined as enrollment in 12 or more credit hours of course work at IIT each semester. All IIT scholarships require satisfactory academic progress as defined in the Undergraduate Bulletin. However, some IIT scholarships have additional academic requirements.

The academic records of students who do not meet the requirements of their IIT scholarships are reviewed after posting of spring term grades.

Transfer-Student Scholarships

Merit scholarships are awarded to transfer students who have strong college records. Awards are renewable based on grade point average at IIT and reasonable academic progress. All admitted students are reviewed for eligibility.
Financial Aid

Athletic Scholarship

As a National Association of Intercollegiate Athletics (NAIA) member, IIT awards athletic scholarships based solely on athletic ability, regardless of need. In compliance with NAIA rules, athletic scholarships are officially made by financial aid officers, upon recommendation of the athletic director. Students with demonstrated financial need will be reviewed for federal, state and other IIT financial aid for which they are eligible. This scholarship may be adjusted upon a student receiving federal and state funding.

IIT Loans

Loans are available to undergraduate students regardless of need. These loans will be listed on a student’s financial aid award notification letter.

IIT Employment Programs

Part-time employment opportunities may be available for students, on- and off-campus. Co-ops, internships and some on-campus jobs are posted in the Career Management Center (CMC) e-Recruiting database. Other on-campus jobs may be announced directly by individual university departments. Students interested in and eligible for employment off-campus in their field of study can get job search assistance from the CMC and must attend an Introduction to Cooperative Education and Internship workshop conducted by the CMC. Workshop schedules are posted at www.cmc.iit.edu. Appointments for individual career counseling may be made by calling 312.567.6800. International students (on F1 visa) are restricted to on campus employment for their first academic year of study at any school in the United States. After completing one academic year in the country, students on F1 visa may be eligible for opportunities off-campus (only if related to their field of study) through the Cooperative Education or Summer Internship Programs.

ROTC Programs

IIT offers scholarship supplements to admitted students who have been awarded U.S. Air Force, Army or Naval ROTC scholarships. The scholarship supplements are described at www.iit.edu/undergrad/rotc.html.

Veterans’ Educational Benefits

Students eligible for the Montgomery GI Bill are eligible for Veterans’ Benefits at IIT. Students need to be accepted by IIT and approved by the Department of Veterans Affairs before receiving benefits. Paperwork needs to be completed in the Registrar’s Office at IIT’s Main Campus to begin the process for obtaining VA tuition benefits. Office visits are by appointment only. For further information or to make an appointment, please contact:

Office of the Registrar, IIT Main Campus
3300 South Federal
Main Building, Room 104
Chicago, IL 60616
registrar@iit.edu
312.567.3100

Continued Eligibility for Financial Assistance

All students receiving federal and/or state financial aid funds must demonstrate reasonable academic progress toward graduation from IIT. Reasonable academic progress includes both a satisfactory cumulative and major grade point average and sufficient credit hours earned each semester toward the completion of a degree program. IIT has established a Reasonable Academic Progress Policy in compliance with federal and state regulations. Failure to comply with IIT’s Reasonable Academic Progress Policy will lead to the student’s losing eligibility for financial assistance.
Additional Information

All financial aid awards and scholarships for freshmen, transfer, continuing undergraduate, and all graduate students (excluding law, graduate business and MPA students) are processed by the IIT Office of Financial Aid. Students should submit all information regarding financial assistance to: Office of Financial Aid, 3300 S. Federal St., Chicago, IL 60616 (telephone 312.567.7219). The office is open from 8:30 a.m. to 5 p.m., Monday through Friday.
Expenses

All University mandatory and non-mandatory charges are published regularly in official University publications including electronic mail and web site postings. For a complete listing of current tuition, fees, and other charges go to bursar.iit.edu, then select Tuition and Fees. The University regrets that continually rising costs do not permit it to guarantee that published charges will not change. Students and parents should anticipate periodic increases in the future.

Admission Application Fee

All applications for undergraduate admission from U.S. citizens (freshmen and transfer students) or international students must be accompanied by a non-refundable fee. Please contact the Office of Admission for applicable fee.

Undergraduate Tuition

Undergraduates registered for 12 credit hours or more are considered full-time and will be charged at the full-time tuition rate. Part-time undergraduates registered for fewer than 12 credit hours will be charged at the per credit hour part-time tuition rate.

Enrollment Deposit

Each student admitted as a full-time degree-seeking undergraduate student is required to make a non-refundable enrollment deposit which is credited toward the student’s cost of attendance and holds a place in class for the initial semester of enrollment.

Welcome Fee

First time undergraduate students are charged a one time fee to cover the costs of welcome week activities for their first term of enrollment.

Other Fees and Charges

A student may incur other fees and charges that are both mandatory and non-mandatory. For a complete current listing of all charges and fees go to bursar.iit.edu, then select Tuition and Fees.
Books and Supplies

Books and supplies are available at the University bookstores. Costs for books and supplies can differ significantly depending upon the field of study. Most undergraduate students can expect to spend at least $1,000 per year for books and supplies (exclusive of drafting equipment, computers, and similar one time purchases). Students in the College of Architecture may spend less on books but substantially more on supplies.

Payment of Tuition, Room and Board, and Other Fees and Charges

Payment of all term charges to the University are due on the first day of classes of each term. For those unable to complete payment by that deadline there are several payment plan options available that incur additional plan fees. The latest tuition and fee information as well as payment-plan enrollment instructions are at bursar.iit.edu and select Student Accounts. Failure to adhere to any payment plan schedule of payments will result in late fees in addition to any plan administrative fee. Payment may be made by cash, check, money order, or credit card. Credit card payments may be made at bursar.iit.edu by selecting Online Payments. Payment may also be made in person at the IIT Cashier’s Office in the Main Building, Main Campus or at the Bursar’s Office at the Downtown Campus. For the current mailing address and contact information regarding any questions about bills and payments contact the Bursar’s Office at bursar@iit.edu; or go to bursar.iit.edu, then select Student Accounts.

University Refund Policy

Under exceptional circumstances, such as withdrawal for involuntary military service, serious illness or injury, consideration may be given by the university for a refund or credit for unused tuition upon written request to the Office of Educational Services. Payments for other charges incurred may be the responsibility of the student at the determination of the university. Refer to the academic calendar at registrar.iit.edu for the last date to drop with a refund.

Outstanding Debts

A hold restricting registration and other services is placed on a student’s record when that student is delinquent in fulfilling his or her financial obligation to the university. A student will be considered delinquent when his or her account is not current according to established university policies and payment due dates. Students with outstanding University debts may be suspended from current term classes. Students whose accounts are not current will not be allowed to register or attend classes for any subsequent term. Official transcripts and diplomas will not be issued until all financial obligations have been met.
Living Expenses

Unmarried Students

The university’s residence halls provide facilities for room and board for undergraduate and graduate men and women. First-year students not living with their families must live in the residence halls. Exceptions to this policy may be granted by the director of housing. Housing for first-year students is guaranteed through June 1. Residence hall contracts are made for the full academic year, from the beginning of orientation in August until commencement in May. Charges for room and board for 2008-09 range from $9,233 to $22,042 for the academic year. When a student applies for housing accommodations, an itemized list of available campus accommodations and rates will be provided. For more information, see the Housing Services Website: housing.iit.edu.

Meals

Students living in residence halls contract for a variety of meal plans. Meal plans and meals on a cash basis are available to non-residents. For more information, see the Housing Services Website: housing.iit.edu.

Housing Deposit Fee

An initial $600 nonrefundable payment, which applies in full to charges for room and board, must be submitted to the director of housing by June 1 for fall semester applicants or by December 1 for spring semester applicants.

Commuting Students

A student living at home and commuting will spend an estimated annual average of $2,000 on living costs at home and for meals on campus, and approximately $1,800 for travel.

Miscellaneous Expenses

Miscellaneous personal and recreational expenses are estimated at $2,100 for the academic year. These figures are used in computing the official financial aid budget.

Married Students

There are living units in four high-rise apartment buildings on campus. These units range from studio to three-bedroom apartments and are not air-conditioned. Leases are available to married students and single full-time graduate students if space is available. Rentals for unfurnished apartments, including all utilities except telephone and cable T.V. range from approximately $650 to $1,594 per month. Applications for campus housing should be submitted to Housing Services well in advance. A $50 non-refundable application fee is required when applying for an apartment.
Undergraduate Curricula

Undergraduate Curricula at IIT

IIT combines excellence in academic preparation for professional careers with opportunities for practical experience in the major branches of engineering, the sciences, mathematics, architecture, computer science and liberal arts. This section lists the general education requirements of the university. Specific degree requirements are described in the departmental listings. For minors, see pages 156–158.

Undeclared Majors

Students who are unsure of their career choices may enter IIT as undeclared or open majors. During the first year of study, undeclared majors take required general education courses in science, mathematics, computer science, humanities and social science. These courses provide the foundation for nearly all of IIT’s major programs. Because general education courses apply to all majors, most students may wait as late as the sophomore year to declare their respective majors and still graduate on time.

Department, Degrees and Certificates

Applied Mathematics Department
- Bachelor of Science in Applied Mathematics

College of Architecture
- Bachelor of Architecture

Biological, Chemical, and Physical Sciences Department
- Bachelor of Science in Biochemistry
- Bachelor of Science in Biology
- Bachelor of Science in Chemistry
- Bachelor of Science in Molecular Biochemistry and Biophysics
- Bachelor of Science in Physics
- Certificate in Premedical Sciences

Biomedical Engineering Department
- Bachelor of Science in Biomedical Engineering

Stuart School of Business
- Bachelor of Science in Business Administration
- Bachelor of Science in Business Administration and Applied Science

Chemical and Biological Engineering Department
- Bachelor of Science in Chemical Engineering

Civil, Architectural, and Environmental Engineering Department
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Architecture Engineering
- Bachelor of Science in Engineering Management
- Certificate in Engineering Graphics and CAD

Computer Science Department
- Bachelor of Science in Computer Science
- Bachelor of Science in Computer Information Systems

Electrical and Computer Engineering Department
- Bachelor of Science in Electrical Engineering
- Bachelor of Science in Computer Engineering

Lewis Department of Humanities
- Bachelor of Science in Humanities
- Bachelor of Science in Journalism of Technology, Science and Business
- Bachelor of Science in Professional and Technical Communication

Industrial Technology and Management Department – Center for Professional Development
- Bachelor of Industrial Technology and Management
- Certificate in Industrial Technology and Management

Information Technology and Management Department – Center for Professional Development
- Bachelor of Information Technology and Management
- Certificate in Information Technology and Management

Mathematics and Science Education Department
- Mathematics and Science Education Secondary Science or Mathematics Teaching Certification

Mechanical, Materials, and Aerospace Engineering Department
- Bachelor of Science in Mechanical Engineering
- Bachelor of Science in Materials Science and Engineering
- Bachelor of Science in Aerospace Engineering

Institute of Psychology
- Bachelor of Science in Psychology
- Certificate in Industrial Training

Social Sciences Department
- Bachelor of Science in Political Science
General Education Requirements

The general education program is designed to ensure that all IIT graduates have a basic understanding of certain essential areas of knowledge. The general education program sets minimal requirements. Most degree programs require additional courses in these areas. These additional course requirements may be found in the departmental listings. General education requirements will not be waived. Substitutions may be considered upon written request to the Office of Educational Services. Approval will be granted only to individual students and then, only under extraordinary circumstances.

A. Writing and Communications

IIT recognizes the importance of critical thinking, writing, and oral communication in all academic pursuits and in professional practice. IIT is therefore committed to a campus-wide program that engages students in the practice of written and oral communication in all disciplines. This program includes the following components:

1. Students who have not received transfer or AP credit for COM 101 at IIT must take the IIT English Proficiency Examination before beginning classes at IIT. Within their first year at IIT, students who do not pass the IIT English Proficiency Examination must demonstrate basic writing proficiency by passing a composition course at IIT. This requirement applies to all students enrolling for an undergraduate degree.

2. Students must complete a minimum of 42 credit hours of courses with a significant written and oral communication component, identified with a (C) in this bulletin, with a minimum distribution as follows:

 15 hours in major courses.
 15 hours in non-major courses.

 Full-time students should enroll in two (C)-designated courses, and part-time students should enroll in one (C)-designated course each academic year.

3. Students must seek help from the IIT Writing Center (see page 258) when referred by course instructors or academic advisors.

B. Mathematics: 5 credit hours

The five credit hours must be of MATH 119 or above. BUS 221 and PSYC 203 also satisfy this requirement.

C. Computer Science: 2 credit hours

All students must take CS 105, 115, 116, 201, or ARCH 125 or a computer science course at the 200-level or above.

D. Humanities and Social or Behavioral Sciences: 21 credit hours, subject to minimum requirements in each area as specified below:

1. Humanities: a minimum of nine credit hours.

 Courses that satisfy this requirement are marked with an (H) in this bulletin. The courses must be distributed as follows:

 (a) Humanities 100-level course.
 (b) At least two courses marked with an (H) at the 300-level or above. Students may use foreign language courses at the 200-level to fulfill 300-level requirements.

2. Social or Behavioral Sciences: a minimum of nine credit hours. Courses that satisfy this requirement are marked with an (S) in this bulletin. The courses must be distributed as follows:

 (a) At least two courses on the 300-level or above.
 (b) Courses from at least two different fields.
 (c) At least six credits in a single field.

E. Natural Science or Engineering:

11 credit hours

This component may be satisfied by courses in engineering, biology, chemistry and physics, or by courses in architecture and psychology marked with an (N). These courses must be distributed as follows:

1. Two sequential natural science or engineering courses in a single field. (CHEM 124 with MS 201 satisfies this requirement.)

2. At least one natural science or engineering course in a second area.

F. Introduction to the Profession:

2 credit hours

All students must complete these courses in their first year. Students entering with 30 hours or more of transfer credit may have this requirement waived with departmental approval. If waived, the total credit hours required for the degree must still be satisfied.

G. Interprofessional Projects (IPRO):

6 credit hours

Students will participate in at least two Interprofessional Project experiences. These projects develop communication, teamwork and leadership skills, as well as an awareness of economic, marketing, ethical and social issues within the framework of a multidisciplinary team project. The project teams will be integrated across academic programs and at different levels within programs. Students who complete an ROTC minor are exempt from one of the two IPRO requirements.
Applied Mathematics

Applied mathematics is mathematics created in response to problems in science, engineering, and society. Applied mathematics work on a wide variety of topics, such as the methods for multi-criteria decision making (requiring probability/statistics, analysis, optimization) and the analysis of liquid flow around solids (including computational methods and analysis). Undergraduate study in applied mathematics at IIT incorporates foci in four areas of modern applied mathematics: applied analysis, computational mathematics, discrete applied mathematics, and stochastic analysis. These areas of study both support IIT’s broad range of professional degree programs and comprise a specialized Bachelor of Science degree in modern applied mathematics.

The objectives of the Applied Mathematics program are to prepare students for careers that utilize mathematics to address problems in science, engineering, and society and to prepare students for graduate study in mathematics.

Students with an applied mathematics background are prepared for jobs in the insurance industry, electronics and computer manufacturing businesses, logistic companies, pharmaceutical firms, etc. The program flexibility allows students to assemble a portfolio of courses that will satisfy both intellectual needs and career preparation.

The degree program includes a required minor consisting of five related courses (at least 15 semester hours) in an area outside of applied mathematics. A minor in computer science or one of the engineering disciplines prepares the student to enter the job market in business or government.

Faculty

Chair
Fred J. Hickernell
Room 208B E1
312.567.8983

Associate Chair
Director of Undergraduate Studies
Gregory Fasshauer
Room 208A E1
312.567.3149

Professors
Duan (Director, Laboratory for Stochastics and Dynamics), Edelstein, Hickernell, McMorris, Nair (jointly with Mechanical, Materials, and Aerospace Engineering), Reingold (jointly with Computer Science)

Associate Professors
Abarji, Adler, Bielecki, Fasshauer, X. Li, Lubin, Rempfer (jointly with Mechanical, Materials, and Aerospace Engineering)

Assistant Professors
Cialenco, Ellis, Kaul, S. Li, Pelsmajer

Research Associate Professor
Heller

Senior Lecturers
Maslanka, Sitton, Tier

Faculty Emeriti
Bernstein, Byrne, Darsow, DeCicco, Deliyannis, Erber, Frank, Pearson, Sklar, Stueben
Bachelor of Science in Applied Mathematics

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics Requirements</td>
<td>41</td>
</tr>
<tr>
<td>MATH 100, 151, 152, 230, 251, 252, 332, 350, 400, 402, (430 or 454), 475</td>
<td></td>
</tr>
<tr>
<td>Applied Mathematics Electives</td>
<td>18</td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Minor Requirement</td>
<td>15</td>
</tr>
<tr>
<td>Five related courses from departments other than Applied Mathematics.</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Computer Science Requirements</td>
<td>4</td>
</tr>
<tr>
<td>(CS 115 and 116) or (CS 105 and 201)</td>
<td></td>
</tr>
<tr>
<td>Science Requirement</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 123</td>
<td></td>
</tr>
<tr>
<td>Science Electives</td>
<td>10</td>
</tr>
<tr>
<td>Free Electives</td>
<td>9</td>
</tr>
<tr>
<td>Total Hours</td>
<td>128</td>
</tr>
</tbody>
</table>

* Applied mathematics electives are to be chosen after consultation with an academic advisor. Student goals, interests and course availability should be determining factors in this selection process.
Applied Mathematics Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 100 Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>MATH 230 Introduction to Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>CS 116 Object-Oriented Programming II</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 332 Matrices</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>MATH 350 Intro to Computational Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 430 Applied Algebra</td>
<td>3</td>
</tr>
<tr>
<td>OR MATH 454 Graph Theory</td>
<td></td>
</tr>
<tr>
<td>MATH 475 Probability</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 402 Complex Analysis</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 400 Real Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Applied Mathematics Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 128

* Applied Mathematics electives are to be chosen after consultation with an academic advisor. Student goals, interests, and course availability should be determining factors in this selection process.
Applied Mathematics Specializations

In addition to the general B.S. degree in Applied Mathematics, the department offers six special five-course sequences that may be used as a guide for the selection of mathematics electives and will prepare the student for a career in:

- business/finance,
- education,
- industrial research, or
- graduate school.

Choosing any of the following specializations is optional.

Specialization in Mathematical Finance
Program advisor: T. Bielecki

Students who choose this specialization may qualify for admission to the Master of Mathematical Finance program – a collaborative program between the Stuart School of Business and the Applied Mathematics Department. The objective of the MMF program is to provide individuals interested in pursuing careers in the finance industry with advanced education in theoretical, computational and business aspects of relevant quantitative methodologies.

Students are required to do a Business or Entrepreneurship minor (see pages 156–158).

Students must take:

MATH 475 Probability
MATH 476 Statistics
MATH 478 Numerical Methods for Differential Equations
MATH 481 Introduction to Stochastic Processes
MATH 485 Introduction to Mathematical Finance

MATH 475 is required for all applied mathematics majors. The other four courses count toward MATH electives.

Closely related courses which are recommended as additional electives include:

MATH 461 Fourier Series and Boundary Value Problems
MATH 477 Numerical Linear Algebra
MATH 483 Design and Analysis of Experiments
MATH 486 Mathematical Modeling
MATH 489 Partial Differential Equations

Specialization in Math Education
Program Advisor: G. Fasshauer

Completion of the following 24 credit hour Mathematics and Science Education minor will prepare students for the Illinois State Certification in Secondary Mathematics (grades 6-12) and Secondary Science: Biology, Chemistry, Physics (grades 6-12).

MSED 200 Analysis of Classrooms
MSED 250 Curriculum/Foundations
MSED 300 Instructional Methods/Strategies I
MSED 320 Inquiry and Problem Solving
MSED 350 Informal Education Practicum and Seminar
MSED 400 Instructional Methods/Strategies II
MSED 450 Professional Internship

Students must take:

MATH 420 Geometry
OR
MATH 453 Combinatorics
MATH 430 Applied Algebra
MATH 454 Graph Theory
MATH 475 Probability
MATH 476 Statistics

MATH 430 or 454, and 475 are required for all applied mathematics majors. The other three courses count toward MATH electives.

Closely related courses which are recommended as additional electives include:

MATH 300 Perspectives in Analysis
MATH 420 Geometry*
MATH 453 Combinatorics*
MATH 486 Mathematical Modeling

*Only if not already counted as a required course.
Applied Mathematics

Specialization in Applied Analysis
Program advisor: J. Duan

Applied analysis is one of the foundations for interdisciplinary applied mathematics. The principles of analysis are applied to such areas as partial differential equations, dynamical systems and numerical analysis. The basic framework, concepts and techniques of modern mathematical analysis are essential for modeling, analysis and simulation of complicated phenomena in engineering and science.

Students must take:

MATH 400 Real Analysis
MATH 402 Complex Analysis
MATH 461 Fourier Series
 and Boundary Value Problems
MATH 488 Ordinary Differential Equations
 and Dynamical Systems
MATH 489 Partial Differential Equations

MATH 400 and 402 are required for all applied mathematics majors. The other three courses count toward MATH electives.

Closely related courses which are recommended as additional electives include:

MATH 405 Iteration and Chaos
MATH 478 Numerical Methods
 for Differential Equations
MATH 486 Mathematical Modeling

Recommended minors include: Physics or an engineering minor.

Specialization in Computational Mathematics
Program Advisor: X. Li

The use of computation/simulation as a third alternative to theory and experimentation is now common practice in many branches of science and engineering. Many scientific problems that were previously inaccessible have seen tremendous progress from the use of computation (e.g., many-body simulations in physics and chemistry, simulation of semi-conductors, etc.). Researchers and scientists in these areas must have a sound training in the fundamentals of computational mathematics and become proficient in the use and development of new algorithms and analytical techniques as they apply to modern computational environments.

Students must take:

MATH 350 Introduction to Computational Mathematics
MATH 435 Linear Optimization
 OR
MATH 461 Fourier Series
 and Boundary Value Problems
MATH 476 Statistics
MATH 477 Numerical Linear Algebra
MATH 478 Numerical Methods
 for Differential Equations

MATH 350 is required for all applied mathematics majors. The other four courses count toward MATH electives.

Closely related courses which are recommended as additional electives include:

MATH 405 Iteration and Chaos
MATH 435 Linear Optimization*
MATH 461 Fourier Series
 and Boundary Value Problems*
MATH 486 Mathematical Modeling
MATH 488 Ordinary Differential Equations
 and Dynamical Systems
MATH 489 Partial Differential Equations

*Only if not already counted as a required courses.

Recommended minors include: Artificial Intelligence, Computational Structures, or Software Engineering.
Specialization in Discrete Applied Mathematics
Program Advisor: M. Pelsmajer

Discrete applied mathematics is a fairly young branch of mathematics and is concerned with using combinatorics, graph theory, optimization, and portions of theoretical computer science to attack problems in engineering as well as the hard and soft sciences.

Students must take:

- MATH 332 Matrices
- MATH 430 Applied Algebra
- MATH 435 Linear Optimization
- MATH 453 Combinatorics
- MATH 454 Graph Theory

MATH 332 and MATH 430 or 454 are required for all applied mathematics majors. The other three courses count toward MATH electives.

Closely related courses which are recommended as additional electives include:

- MATH 405 Iteration and Chaos
- MATH 410 Number Theory

Recommended minors include: Artificial Intelligence, Computational Structures, or Computer Networking.

Specialization in Stochastics
Program Advisor: I. Cialenco

Stochastics at IIT includes traditional statistics (the methods of data analysis and inference) and probability (the modeling of uncertainty and randomness). However, also included are other areas where stochastic methods have been becoming more important in recent years such as stochastic processes, stochastic integration, stochastic dynamics, stochastic partial differential equations, probabilistic methods for analysis, mathematical finance, discrete mathematics, and computational methods for stochastic systems.

Students must take:

- MATH 475 Probability
- MATH 476 Statistics
- MATH 481 Introduction to Stochastic Process
- MATH 485 Introduction to Mathematical Finance
- MATH 488 Ordinary Differential Equations and Dynamical Systems

MATH 475 is required for all applied mathematics majors. The other four courses count toward MATH electives.

Closely related courses which are recommended as additional electives include:

- MATH 453 Combinatorics
- MATH 483 Design and Analysis of Experiments
- MATH 486 Mathematical Modeling
College of Architecture

College Web site: www.arch.iit.edu

Now, in the new century, architecture must fill an ever more demanding role in asserting human values in a rapidly changing, technology-driven and increasingly complex global society. The integration of new construction, along with the conservation of the old, brings together current issues of urban housing, commercial development, infrastructure and transportation, along with critical concerns for energy and a sustainable environment. The resulting cultural values of community development must be adaptable to both domestic and international contexts, and thoughtful to the consequences of what we build.

Drawing strength from its Mies van der Rohe heritage, its key position in the legacy of Modernism, its location in Chicago, and its connections to progressive practitioners and emerging global practices, the College of Architecture offers the professional, five-year Bachelor of Architecture (B.Arch.) degree. Accredited by the National Architectural Accrediting Board (NAAB), this well-established degree program prepares architects to use communication and analytical skills to provide inventive solutions to a broad range of design problems.

The objectives of the B.Arch. program prepare architects to respond to an increasingly complex global condition, within cities and beyond. Informed by humanist ideals, our graduates combine technical expertise and environmental awareness to design and execute individual buildings as well as sensitively planned landscapes at any scale, in any material. Consisting of tenured faculty and practicing architects, our teachers are committed to training and educating a diverse student body for a broad range of professional career opportunities in architecture and the construction industry. Integrating advanced digital technology and design studio training, our program prepares our graduates to:

- Design functional, compelling buildings to meet the needs of a complex, changing world.

- Work collaboratively with allied professionals (engineering, landscape architecture, construction management, planning) to produce quality built environments.

- Enter the profession equipped with an integrated knowledge of complex construction technologies, craftsmanship, materials, and an inspired sense of design excellence.

- Articulate in two-dimensional and three-dimensional visual form a contemporary vision for architectural excellence responsive to the 21st century’s cultural, economic, regulatory, environmental, ethical, and material contingencies that condition the built world.

- Take leadership roles throughout their lives to support design excellence, develop technical expertise, advance professional practice, practice ethical integrity, and promote respect for the architect in contemporary society.

- Consider all aspects of the built environment to insure a sustainable and planned integration of architecture with the natural environment and its resources.

To understand architecture in its global context, IIT students are encouraged to travel outside the United States to study modern and historic buildings. Students in their fourth year of B.Arch. studies may pursue several study abroad opportunities. In fall and spring, the College offers a semester of studio and architecture electives in Paris. Student financial aid remains intact for this IIT program. Students admitted to the Paris Program combine their Paris studio and courses with travel throughout Europe as they complete projects derived from contemporary urban landscapes. Students may apply to study abroad programs offered in architecture programs at other universities throughout the world. Pre-approval from the College, the Office of Educational Services, and the International Center is required. The College is expanding relations to partner schools of architecture throughout the world. Each semester, a few advanced studios have been situated for a month in Asia and South America. Students should discuss study abroad options with their academic advisors, assistant dean, and the College’s director of international affairs.

The College’s roots are firmly embedded in Chicago’s architectural history. Creative pioneers like Sullivan, Jenney, Root, Burnham and Wright produced a body of work that established the principles of modern architecture. These architects were inspired by exciting new engineering possibilities, yet they never wavered from the unifying belief in a rich cultural expression of architecture for their time. They also believed in education and, in 1895, combined a course of study in drawing and construction at the Art Institute of Chicago, with the support courses of history, mathematics and engineering from the then Armour Institute of Technology. The catalog for this new program was called the Chicago School of Architecture.

Out of these beginnings, the College’s faculty and students continue to engage with complexities that inform architectural education and future practice. As one of the world’s greatest cities for the study of architecture, landscape, and architectural engineering, Chicago’s built environment and active profession reinforces the College’s educational mission. Our teachers are both practitioners and educators. Moreover, S.R. Crown Hall, designed by Mies van der Rohe, is the ultimate space to study architecture. Set within the Mies-designed campus, it has become recognized as one of the most significant buildings of the 20th century.

The curriculum emphasizes digital applications (including Building Information Management), advanced technologies, design and theory, landscape architecture and its relationship to architecture, development and design/build, sustainability and planning, and his-
Architecture seeks to become a force for designing built environments of high quality through the incorporation of planning, technology, materials, space and formal generation. The responsible integration of these attributes is promoted to accentuate the historical, social, cultural, and environmental imperatives requisite to better society.

Faculty

Dean
Donna V. Robertson, FAIA
S. R. Crown Hall
312.567.3230

Associate Dean
Peter Beltemacchi
S.R. Crown Hall
312.567.3261

Assistant Dean
Undergraduate Academic Affairs
R. Stephen Sennott
S.R. Crown Hall
312.567.8835

Professors
Elnimeiri, Land, Robertson

Associate Professors
Beltemacchi, Denison, Flury, Hovey, Krawczyk, Mallgrave, Ronan, Schipporeit, Sharpe, Takeuchi

Assistant Professors
Brock, M. Brown, Conger-Austin, Durbrow, Kearns, Keller, Kultermann, Osler, B. Riley, Rockey, Wetzel

Studio Professors
Horn, Karidis, Krueck, Stutzki

Studio Assist Mult Professors
T. Brown, Felsen, Miller, Nagle, Nelson, Pettigrew, Roesch, Wood

Studio Assistant Professor
McLeish

Instructors
Braucher, Davis

Distinguished Research Professor
Sobel

Morgenstern Visiting Critics

Adjunct Professors
Brubaker, Clark, Hamill, Hartray, Karlovitz, Moreno, Peterson, Ryan, Thomas, Uhlir, Wimer

Adjunct Associate Professors
Anand, Bardusk, Cook, Danly, Desalvo, Endres, Fleener, Gang, Geiger, Glynn, Goldsmith, Grzeslo, Hickey, Kaplan, Kindel, Kriegshauser, Lehman, Nguyen, Paradiso, Pedota, Pierce, Schendel, Schuette, Sennott

Adjunct Assistant Professors
Attali, Balogh, Beck, Brewer, Canna, Chadha, Emmick, Greenberg, Hall, Humor, Johnson, Jones, Kibler, Kingstigh, Klaeschen, Klymnson, Koreman, Krone, Macias, Pack, Peluso, Pieracci, Schachman, Shojanie

Visiting Assistant Professor
Goodman

Research Professors
Jalayerian, Witte

Research Assistant Professor
Sozer

Research Associates
Moddrell, Parente, Tamai

Senior Lecturers
Ellingsen, Kim

Faculty Emeriti
Hannaford, Thomas, Utsunomiya
Architecture

Professional Degrees

The undergraduate professional degree program at IIT has always been a comprehensive five-year accredited Bachelor of Architecture (B.Arch) degree. The curriculum provides the fundamental body of knowledge required by the profession within a coordinated three-year foundation studio sequence. Each of the three years is team taught to horizontally integrate all courses within each year and vertically sequence learning experiences. This professional background prepares students for the last two years of advanced design studios focused on spatial awareness, comprehensive building design, and the design of large building complexes.

IIT has also taken a leadership role in addressing the responsibilities of professional education for the 21st century’s global workplace. While technical proficiency will always be necessary, IIT recognizes that colleges must also educate students to work as part of teams, to communicate well, and to understand the economic, social, ethical, environmental and international context of their profession. Faculty broaden the upper-level studios to resemble real-world interdisciplinary projects. This emphasis on holistic learning, when combined with a new global vision and advanced computer and communication technology, positions IIT and the College of Architecture on the leading edge of architectural education.

In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit U.S. professional degree programs in architecture, recognizes three types of degrees: the Bachelor of Architecture, the Master of Architecture, and the Doctor of Architecture. A program may be granted a 6-year, 3-year, or 2-year term of accreditation, depending on the extent of its conformance with established educational standards.

Master’s degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree that, when earned sequentially, constitute an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The four-year pre-professional degree, where offered, is not accredited by NAAB. The pre-professional degree is useful to those wishing a foundation in the field of architecture as preparation for either continued education in a professional degree program or for employment options in fields related to architecture. (The College does not offer this four-year pre-professional degree.)

Bachelor of Architecture

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture Requirements</td>
<td>84</td>
</tr>
<tr>
<td>ARCH 100, 109, 110, 113, 114, 125, 201, 202, 226, 305, 306, 403, 404, 413, 417, 418, 419, 420, 423</td>
<td></td>
</tr>
<tr>
<td>Building Science and Structural Requirements</td>
<td>9</td>
</tr>
<tr>
<td>ARCH 230, 334, 335</td>
<td></td>
</tr>
<tr>
<td>Art and Architectural History Requirements</td>
<td>9</td>
</tr>
<tr>
<td>AAH 119, 120, ARCH 321</td>
<td></td>
</tr>
<tr>
<td>Architectural History Elective</td>
<td>3</td>
</tr>
<tr>
<td>City and Regional Planning Requirements</td>
<td>6</td>
</tr>
<tr>
<td>CRP 201, 465</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>6</td>
</tr>
<tr>
<td>MATH 119, 122</td>
<td></td>
</tr>
<tr>
<td>Physics Requirement</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 200</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects (2)</td>
<td>6</td>
</tr>
<tr>
<td>Architecture Electives (7)</td>
<td>21</td>
</tr>
</tbody>
</table>

Total Hours 169
Architecture Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 113</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 100</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 109</td>
<td>2</td>
</tr>
<tr>
<td>MATH 119</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 114</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 110</td>
<td>2</td>
</tr>
<tr>
<td>MATH 122</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 125</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 201</td>
<td>5</td>
</tr>
<tr>
<td>AAH 119</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 226</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 200</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 202</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 230</td>
<td>3</td>
</tr>
<tr>
<td>AAH 120</td>
<td>3</td>
</tr>
<tr>
<td>CRP 201</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 305</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 403</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 423</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 334</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 321</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 306</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 404</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 335</td>
<td>3</td>
</tr>
<tr>
<td>CRP 465</td>
<td>3</td>
</tr>
<tr>
<td>Architecture Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 417</td>
<td>6</td>
</tr>
<tr>
<td>Architecture Elective</td>
<td>3</td>
</tr>
<tr>
<td>Architecture Elective</td>
<td>3</td>
</tr>
<tr>
<td>History of Architecture Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 418</td>
<td>6</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>3</td>
</tr>
<tr>
<td>Architecture Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 9</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 419</td>
<td>6</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>3</td>
</tr>
<tr>
<td>Architecture Elective</td>
<td>3</td>
</tr>
<tr>
<td>Architecture Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 10</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 420</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 413</td>
<td>3</td>
</tr>
<tr>
<td>Architecture Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 169
Architecture

Specializations in Architecture

The global practice of architecture invites students to develop an extensive background in related areas of expertise. Within the required curriculum, students may select from studios and architecture electives to satisfy an area of specialization. Working with their academic advisors, students are encouraged to identify a specialization in their second or third year of study in order to plan the appropriate sequence of courses. Credit requirements (15 credit hours) for each specialization are met by a combination of required core courses, advanced studios, and architecture electives. Prior approval for electives is required.

Architectural History and Theory

Required:
AAH 119 History of World Architecture I
AAH 120 History of World Architecture II
ARCH 321 History of Modern Thought in Architecture, and the required elective in the history of architecture

Additional:
three elective history of architecture courses (AAH, ARCH, or LA) approved by the advisor

City and Regional Planning

Required:
CRP 201 The Dwelling
CRP 465 The Ecological Basis of Planning

Additional:
three elective city and regional planning courses approved by the advisor

Design Build

Required:
ARCH 417, 418, 419 or 420 Advanced Studio (Design Build)

Additional:
three elective design build courses approved by the advisor

Digital Design

Required:
ARCH 125 Introduction to Architectural Computing
ARCH 226 Digital Media I - 2D CAD
ARCH 427 Digital Media II - 3D Modeling
ARCH 428 Digital Media III - 3D Animation

Additional:
two elective digital courses approved by the advisor

Landscape Architecture

Required:
ARCH 417, 418, 419 or 420 Advanced Studio (Landscape Architecture)

Additional:
three elective landscape-related architecture courses (ARCH) or landscape architecture (LA) courses approved by the advisor

Optional Programs

Architecture students are encouraged to select electives that provide a sequence of 15 credit hours of learning experiences related to a specific interest that will reinforce the curriculum. Such topical fields of study should be chosen early in the student’s program in consultation with their academic advisor.

Bachelor of Architecture/Master of Business Administration Double-Degree

Qualified students may earn both the Bachelor of Architecture and Master of Business Administration (M.B.A.) degrees in six, rather than the normal seven, years. Students who are completing their eighth semester, or an equivalent of 124 credit hours, in architecture at IIT may apply for entry into the joint program. They should take preparatory courses for the M.B.A. prior to entry and the Graduate Management Admission Test (GMAT) during the eighth semester. Students who anticipate entering into the program should seek advising in the Stuart School of Business and the College of Architecture early in their studies at IIT.
Bachelor of Architecture/Master of Civil Engineering Double-Degree Option

Qualified students regularly enrolled at IIT may earn both the Bachelor of Architecture and the Master of Civil Engineering (M.C.E.) Degrees. They must complete preparatory courses for the M.C.E. prior to entry into the combined program. Students who anticipate entry into the combined program and who intend to specialize in structural engineering must successfully complete the following courses as part of their undergraduate program in architecture: MATH 151, MATH 152, MATH 251, CAE 303, CAE 304, CAE 307, CAE 310, CAE 431, and CAE 432 in place of MATH 119, MATH 122, CAE 287, CAE 351, CAE 352 and as technical electives. Students who anticipate entry into the combined program and who intend to specialize in construction engineering and management must successfully complete the following courses as part of the technical electives in their undergraduate programs in architecture: CAE 323, CAE 431, CAE 432 and CAE 457.

Students who anticipate entering into the program should seek advising in the Department of Civil and Architectural Engineering and the College of Architecture early in their studies at IIT.

Minors and Architectural Electives

College of Architecture students may pursue a minor in another department; however, the requirements for a minor must be met in addition to the curricular requirements for the Bachelor of Architecture degree. Requirements for architecture electives are most often met by courses offered in the College of Architecture. When deemed appropriate by an advisor or a dean, and in consultation with the Office of Educational Services, a select number of courses from other departments may serve as an architecture elective. These have included CRP courses, ID courses in architectural photography, or selected CAE courses related to construction management or civil and architectural engineering. Within the College of Architecture, students may choose architecture elective courses to design a specialized area of study such as advanced CAD presentation, architectural history, or city planning. Students should consult with their academic advisor early in their program of study.
In an ever more technological world, a substantive understanding of the sciences is a requirement for many professions, including careers in science, education, health professions and, increasingly, areas such as law and business. In the latter cases, a technical background can serve as a unique and sought after qualification.

The Department of Biological, Chemical and Physical Sciences offers traditional Bachelor of Science (B.S.) degrees in each area of biology, chemistry and physics, as well as interdisciplinary B.S. degrees in Biochemistry, and Molecular Biochemistry and Biophysics (M.B.B.). All five programs serve as a solid foundation for entry into graduate and medical schools and for jobs in both the government and the private sector. They are also designed to fulfill the requirements for our special medical and optometry degree programs.

The department also provides specialized B.S. degree programs that integrate the sciences with law, business, and secondary education. These include programs which offer joint admission to IIT’s Chicago-Kent College of Law, the Stuart School of Business Financial Markets Program, and the Department of Mathematics and Science Education.

Details of the five traditional programs, as well as the specialized degree programs, can be found on the following pages, the Department of Mathematics and Science Education section (pages 122–123), and in the Special Programs section (pages 159–166).
Faculty

Chair
John F. Zasadzinski
Room 182C Life Sciences
312.567.5874

Biology Faculty

Associate Chair
Ben Stark
Room 182B Life Sciences
312.567.3488

Professors
Cork, Irving, McCormick, Mehta, Stark

Assistant Professors
Bishnoi, Cage, Chong

Senior Lecturers
Nguyen

Lecturer
Calcaterra

Research Professors
Buttner, Stetter

Faculty Emeriti
Eisenberg, Fanta, Filler

Physics Faculty

Associate Chair
Howard Rubin
Room 182A Life Sciences
312.567.3395

Pritzker Professor of Science
Lederman

Professors
Betts, Bunker, Kallend**, Kaplan, Morrison, Rubin, Scott, Segre, Zasadzinski

Associate Professors
Coffey, Longworth, Spentzouris, White

Assistant Professors
Gidalevitz, Sullivan, Terry, Torun

Research Professor
Johnstone

Research Associate Professors
Barrea, Roberts

Research Assistant Professor
Khelashvili

Senior Lecturers
Friedman, Glodowski

Faculty Emeriti
Burnstein, Erber*, Hauser, P.W. Johnson, Malhiot, Spector, Zwicker

Chemistry Faculty

Associate Chair
Rong Wang
Room 182D Life Sciences
312.567.3121

Professors
P.Y. Johnson, Khan, Lykos, Mandal, Schug

Adjunct Professor
Cwik

Associate Professor
R. Wang

Assistant Professors
Chong

Senior Lecturers
Nguyen

Lecturer
Calcaterra

Research Professors
Buttner, Stetter

Faculty Emeriti
Eisenberg, Fanta, Filler

* Jointly with Department of Applied Mathematics
** Jointly with Department of Mechanical, Materials and Aerospace Engineering
Biological, Chemical, and Physical Sciences

Biochemistry

The degree program in Biochemistry is intended to prepare students for entrance into post baccalaureate programs in the health professions or the basic sciences. Biochemistry is becoming an increasingly popular career path for many scientists as the basic scientific fields of chemistry and biology intertwine. The program in Biochemistry will offer students a strong foundation in both the biological and chemical sciences with opportunities to construct their degree program to best suit their interests.

Bachelor of Science in Biochemistry

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Requirements</td>
<td>23</td>
</tr>
<tr>
<td>BIOL 100, 107, 109, 115, 117, 210, 214, 445, 446, 495</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>24/28</td>
</tr>
<tr>
<td>CHEM 124, 125, 237, 239, 240, 247, 343, 344 (or PHYS 223), 485</td>
<td></td>
</tr>
<tr>
<td>Biochemistry Requirements</td>
<td>9</td>
</tr>
<tr>
<td>BIOL 401, 402, 404</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td>14/16</td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>8/12</td>
</tr>
<tr>
<td>PHYS 123, 221, 223 (or CHEM 344)</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>17</td>
</tr>
<tr>
<td>MATH 151, 152, 251, and BME 433</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 128-130
Biochemistry Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 100</td>
<td>Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>General Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 109</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 115</td>
<td>Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 117</td>
<td>Human Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 214</td>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CS 105</td>
<td>Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 210</td>
<td>Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 239</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 240</td>
<td>Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 343</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 445</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 223</td>
<td>General Physics III*</td>
<td>3/4</td>
</tr>
<tr>
<td>CHEM 247</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15/16</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 344</td>
<td>Physical Chemistry II*</td>
<td>3/4</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 223</td>
<td>General Physics III*</td>
<td>3</td>
</tr>
<tr>
<td>BME 433</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16/17</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 401</td>
<td>Introductory Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 446</td>
<td>Cell Biology Lab</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 495</td>
<td>Biology Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 402</td>
<td>Metabolic Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 404</td>
<td>Biochemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Total Credit Hours

128-130

* Student must complete either PHYS 223 or CHEM 344.
Biological, Chemical, and Physical Sciences

Biology

The undergraduate biology degree at IIT provides excellent preparation for the health professions, including medicine, osteopathic medicine, and dentistry. In addition, the rigorous program prepares graduates for careers in biotechnology, biochemistry, patent law, and environmental science.

Graduates are also prepared for immediate entry into positions in industrial, medical, and other research laboratories and for graduate programs in biotechnology, cell biology, biochemistry, genetics, and molecular biology.

The objectives of IIT’s Biology major are to give students strong training in the areas of modern cell biology, genetics, biochemistry, microbiology, and physiology, supported by a solid foundation in mathematics and the physical sciences. In addition, the Biology major is designed to give students broad opportunities to study advanced topics in biology, both in the classroom and by participating in undergraduate research projects.

Bachelor of Science in Biology

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Requirements</td>
<td>40</td>
</tr>
<tr>
<td>BIOL 100, 107, 109, 115, 117, 210, 214, 225, 320, 401, 402, 404, 430, 445, 446, 495 (2)</td>
<td></td>
</tr>
<tr>
<td>Biology Electives</td>
<td>12</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>10</td>
</tr>
<tr>
<td>MATH 151, 152</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>18</td>
</tr>
<tr>
<td>CHEM 124, 125, 237, 239, 247</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>126</td>
</tr>
</tbody>
</table>
Biology Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 100</td>
<td>Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>General Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 109</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 115</td>
<td>Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 117</td>
<td>Human Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 214</td>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 210</td>
<td>Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 225</td>
<td>Microbiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 239</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 401</td>
<td>Introductory Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 430</td>
<td>Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 247</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 224</td>
<td>General Physics III</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 402</td>
<td>Metabolic Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 404</td>
<td>Biochemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>CS 105</td>
<td>Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Literature in Biology</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 445</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 446</td>
<td>Cell Biology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 495</td>
<td>Biology Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>Biology Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biology Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 495</td>
<td>Biology Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Biology Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biology Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours

126
Chemistry

Chemistry is the study of the miniaturized world of atoms and molecules. Chemists analyze the structure of this world of chemicals, discover the forces that govern chemical changes, and invent chemical reactions which create new molecules and materials for the benefit of mankind. For example, most of the clothes we wear and the containers that hold our food are made of synthetic fibers and polymers that were conceived and developed by chemists. Life-saving pharmaceuticals are designed and synthesized by chemists. The development of insecticides, cosmetics, fragrances, fertilizers, and high tech materials are other examples of the impact of chemistry on society. The objective of the IIT undergraduate program in chemistry is to provide rigorous education in the fundamental areas of chemical theory and chemical experimentation. Students become well trained for industrial careers in research and development, chemical analysis, or chemical manufacturing and marketing. Our requirement for participation in an original research project also provides the necessary experience for entrance into graduate school in one of the chemical sciences. In addition, the IIT program in chemistry provides excellent preprofessional training for careers in medicine (see page 55 and www.iit.edu/~premed), law, business, and other areas of science and healthcare. IIT has developed a very flexible curriculum which, in addition to our standard bachelor’s degree in chemistry, gives students the option of selecting an area of chemical emphasis such as biological, pharmaceutical, polymer, materials, chemical physics, or chemical education. Students learn not only the basic science of chemistry but also the practical aspects of the discipline and its numerous applications. The IIT Bachelor of Science in Chemistry is approved by the American Chemical Society Committee on Professional Training.

Coursework

The first stage of undergraduate training provides a solid foundation in all of the five basic areas of chemistry (analytical, inorganic, organic, physical and biochemistry). Most of these courses include required laboratory work. These laboratories provide extensive practical exposure to each of these areas and experience with modern chemical instrumentation such as nuclear magnetic resonance spectroscopy, infrared spectroscopy, and gas and high-pressure liquid chromatography. Concurrently, students take courses to strengthen their understanding of mathematics and physics. Students are invited and encouraged to attend weekly chemistry colloquia where lectures are given by prominent chemists from industrial, governmental, and academic laboratories. In the second stage, students take advanced and specialized courses which focus on career interests. An integral part of this stage is a research project under the supervision of a member of the chemistry faculty, culminating in a senior thesis. Students may receive certification of their Bachelor of Science in Chemistry degree through the American Chemical Society (www.acs.org) by selection of appropriate chemistry electives.

Optional Degree Programs in Chemistry

Because of the diversity of interests of students in chemistry and the increasing interdisciplinary impact of chemistry in other areas, IIT offers optional degree programs in chemistry. Each degree program maintains the five basic core areas of chemistry while at the same time providing options to prepare students to enter an operationally well-recognized career path. Students can elect the traditional Bachelor of Science degree in chemistry where they choose their own technical electives or focus on one of the following six options:

- Bachelor of Science in Chemistry with emphasis in Biological Chemistry
- Bachelor of Science in Chemistry with emphasis in Pharmaceutical Chemistry
- Bachelor of Science in Chemistry with emphasis in Polymer Chemistry
- Bachelor of Science in Chemistry with emphasis in Materials Chemistry
- Bachelor of Science in Chemistry with emphasis in Chemical Physics
- Bachelor of Science in Chemistry with emphasis in Chemical Education
Bachelor of Science in Chemistry

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Requirements</td>
<td>54</td>
</tr>
<tr>
<td>CHEM 100, 124, 125, 237, 239, 240, 247, 321, 343, 344, 415, 416*, 434, 450*, 451, 485*, 487*</td>
<td></td>
</tr>
<tr>
<td>Technical Electives**</td>
<td>15</td>
</tr>
<tr>
<td>Biology Requirement</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 401</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>127</td>
</tr>
</tbody>
</table>

* CHEM 416, 450, 485 and 487 are not required for students pursuing the Bachelor of Science in Chemistry with emphasis in Chemical Education.

** One of the technical electives must be BIOL 107 or BIOL 115. This course must be taken before the student enrolls in BIOL 401.
Chemistry Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 100</td>
<td>2</td>
<td>CHEM 125</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>4</td>
<td>MATH 152</td>
<td>5</td>
</tr>
<tr>
<td>CS 105</td>
<td>2</td>
<td>PHYS 123</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>5</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
<td>Total Hours</td>
<td>16</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 237</td>
<td>4</td>
<td>CHEM 239</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 247</td>
<td>3</td>
<td>CHEM 240</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251</td>
<td>4</td>
<td>MATH 252</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>4</td>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 343</td>
<td>3</td>
<td>CHEM 344</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 321</td>
<td>4</td>
<td>CHEM 434</td>
<td>4</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>3</td>
<td>CHEM 450</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Total Hours</td>
<td>14</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 415</td>
<td>3</td>
<td>CHEM 487</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 401</td>
<td>3</td>
<td>IPRO 497</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 451</td>
<td>3</td>
<td>CHEM 485</td>
<td>1</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>3</td>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Total Credit Hours 127

* Requires approval by the advisor. One of the technical electives must be BIOL 107 or BIOL 115. This course must be taken before the student enrolls in BIOL 401.

** CHEM 416, 450, 485, and 487 are not required for students pursuing the Bachelor of Science in Chemistry with emphasis in Chemical Education.
Optional Chemistry Degree Program Course Requirements

Students choosing to pursue one of the Optional Degree Programs below must take the following prescribed courses as technical electives. Detailed sample curricula are available for each of the degree programs, see: www.iit.edu/~chemistry.

Bachelor of Science in Chemistry with emphasis in Biological Chemistry

Program Advisor: N. Menhart

Biological chemistry is the study of the structure, composition, and chemical reactions of substances found in living systems. This option provides the necessary link between chemistry and biology which allows students to learn both the theory and technical skills required to initiate and successfully complete scientific problems at the interface of these two disciplines. The biological chemistry option is particularly well suited for students interested in the molecular basis of medicine. The option provides all the necessary background material required for admission to any medical, osteopathic, or veterinary school in the country.

- BIOL 210 Microbiology Lectures
- BIOL 225 Microbiology Laboratory
- BIOL 214 Genetics
- BIOL 402 Metabolic Biochemistry
- BIOL 445 Cell Biology
- BIOL 446 Cell Biology Laboratory

Bachelor of Science in Chemistry with emphasis in Pharmaceutical Chemistry*

Program Advisors: H. S. Chong

Pharmaceutical chemistry is an area of chemistry focused on the development of new drugs used to prevent, cure, or relieve symptoms of disease. Modern medical practice relies on an enormous armamentarium of drugs that block, counteract, or lessen the debilitating effects of disease. The pharmaceutical chemistry option emphasizes the synthesis and characterization of pharmaceuticals as well as the relationship between the structure of the drug to its biological activity.

- CHEM 455 Advanced Organic Chemistry
- CHEM 531 Tactics of Organic Synthesis
- CHEM 539 Intro to Pharmaceutical Chemistry
- BIOL 402 Metabolic Biochemistry
- CHEM 497 Special Problems

Bachelor of Science in Chemistry with emphasis in Polymer Chemistry*

Program Advisor: B. Mandal

A polymer is a chain of small molecules linked together to form a larger single molecule. Chemists make polymers because of their unique properties which they impart to products such as paints and adhesives, drug delivery systems, and artificial skin. The polymer chemistry option emphasizes the techniques involved in the synthesis and characterization of polymeric materials.

- CHEM 455 Advanced Organic Chemistry
- CHEM 470 Introduction to Polymer Chemistry
- CHEM 535 Advanced Polymer Chemistry
- CHEM 537 Polymer Chemistry Laboratory
- CHEM 542 Polymer Characterization and Analysis

* Student interested in pursuing the pharmaceutical chemistry or polymer chemistry degree option must submit a formal letter of intent to a program advisor by the end of their second year. To insure adequate performance in CHEM 455 and graduate level organic chemistry courses, students should have completed CHEM 237 and CHEM 239 with grades of “B” or better. Students must also take the American Chemical Society placement examination in organic chemistry after they complete CHEM 239. The results will be used for advising and tracking purposes.
Bachelor of Science in Chemistry with emphasis in Materials Chemistry

Program Advisor: M.I. Khan

Materials chemistry is focused on the preparation and characterization of pure chemicals or chemical systems that have some unique function. This function can be dependent on the material’s optical, electronic, magnetic, or catalytic properties. The materials chemistry option draws from all five of the basic areas of chemistry to lay the foundation for understanding the synthesis, structure, characterization, and applications of materials. A particularly strong emphasis at IIT is programmatic access to advanced X-ray crystallographic instrumentation to study the structure of inorganic-based materials in the solid state.

- MS 201 Materials Sciences
- MMAE 486 Principles of Ceramics
- PHYS 437 Solid State Physics
- CHEM 470 Introduction to Polymer Chemistry

Select one course from the following:

- MMAE 465 Electrical, Magnetic and Optical Properties of Materials
- PHYS 415 Solid State Electronics

Bachelor of Science in Chemistry with emphasis in Chemical Physics

Program Advisors: R. Wang/P. Lykos

Chemical Physics is focused on the development of theoretical constructs and experimental methodologies to infer the properties of bulk matter from a molecular prospective. Chemical physicists seek to unravel varied mysteries such as how proteins fold, how nanostructures form and behave, and how small molecules interact with cell membranes. The chemical physics option provides a solid foundation in chemistry with extensive coursework in physics and mathematics allowing students to make connections using the language of mathematics and the laws of physics to solve chemical problems.

- PHYS 308 Classical Mechanics I
- PHYS 401 Statistical Physics
- PHYS 405 Fundamentals of Quantum Theory I
- PHYS 410 Molecular Biophysics
- PHYS 440 Computational Physics

Select one course from the following:

- PHYS 412 Modern Optics and Lasers
- PHYS 413 Electromagnetism I
- PHYS 437 Solid State Physics

Bachelor of Science in Chemistry with emphasis in Chemical Education

Program Advisor: M. El-Maazawi/N. Lederman

There is a national need for teachers with a rigorous training in chemistry. The chemical education option not only leads to the bachelor of science degree in chemistry but also enables a student to obtain a science teaching certificate through our Department of Mathematics and Science Education (see pages 122–123 and www.iit.edu/departments/msed/).

- MSED 200 Analysis of Classrooms – Practicum and Seminar
- MSED 250 Curriculum/Foundations
- MSED 300 Instructional Methods/Strategies I
- MSED 320 Inquiry/IPRO Seminar
- MSED 350 Informal Education Practicum and Seminar
- MSED 400 Instructional Methods/Strategies II
- MSED 450 Professional Internship
Molecular Biochemistry and Biophysics

Why should a biologist know about physics and chemistry? Why should physicists and chemists know about biology? Just ask some of IIT’s faculty who are using x-ray synchrotron radiation science to study proteins and their molecular structures. This research may lead to the important advances in understanding the causes of a number of diseases.

Molecular Biochemistry and Biophysics (MBB) is an interdisciplinary major, combining studies in biology, chemistry, and physics. Its objectives are to give students solid training in the areas of modern cell biology, genetics, and biochemistry while also providing a strong background in mathematics and the physical sciences. In this way the MBB degree will provide each student with the skills needed to succeed as a professional in biology as the field becomes increasingly dependent on new technologies.

Through this curriculum, students will discover the essential building blocks of life, how they fit together, how they work, and the physical methods for exploring them. With its quantitative emphasis encompassing all the sciences, this program is a great way to prepare for careers in medicine or medical research. It is also one of the majors that is part of the honors medical programs with Rush University.

Bachelor of Science in Molecular Biochemistry and Biophysics

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Requirements</td>
<td>40</td>
</tr>
<tr>
<td>BIOL 100, 107, 109, 115, 117, 210, 214, 225, 320, 401, 402, 404, 430, 445, 446, 495 (2)</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>24/25</td>
</tr>
<tr>
<td>CHEM 124, 125, 237, 239, 247 (or PHYS 300), 343, 344 (or PHYS 348)</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>15</td>
</tr>
<tr>
<td>PHYS 123, 221, 223, 410</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>20/21</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252 (or PHYS 240), 474</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences</td>
<td>21</td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>128-130</td>
</tr>
</tbody>
</table>
Molecular Biochemistry and Biophysics Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 100 Introduction to the Profession</td>
<td>2</td>
<td>BIOL 115 Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 107 General Biology</td>
<td>3</td>
<td>BIOL 117 Human Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 109 General Biology Laboratory</td>
<td>1</td>
<td>CHEM 125 Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
<td>PHYS 221 General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 237 Organic Chemistry I</td>
<td>4</td>
<td>CHEM 239 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 214 Genetics</td>
<td>3</td>
<td>BIOL 210 Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
<td>BIOL 225 Microbiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CS 105 Intro to Computer Programming</td>
<td>2</td>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 445 Cell Biology</td>
<td>3</td>
<td>BIOL 430 Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 223 General Physics III</td>
<td>4</td>
<td>PHYS 240 Computational Science</td>
<td></td>
</tr>
<tr>
<td>CHEM 247 Analytical Chemistry</td>
<td>4</td>
<td>MATH 252 Introduction to Differential Equations</td>
<td>3/4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>PHYS 348 Modern Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 300 Instrumentation Lab</td>
<td>3</td>
<td>OR</td>
<td>3/4</td>
</tr>
<tr>
<td>CHEM 343 Physical Chemistry I</td>
<td>3</td>
<td>CHEM 344 Physical Chemistry II</td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>15/17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320 Biological Literature</td>
<td>2</td>
<td>BIOL 402 Metabolic Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 401 Introductory Biochemistry</td>
<td>3</td>
<td>BIOL 404 Biochemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 410 Molecular Biophysics</td>
<td>3</td>
<td>BIOL 495 Biology Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 446 Cell Biology Laboratory</td>
<td>3</td>
<td>MATH 474 Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 495 Biology Colloquium</td>
<td>1</td>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours 128-130
Physics

The undergraduate physics program at IIT provides an excellent preparation for a number of professions including law (patent and intellectual property), health physics, business, and research. Graduates are prepared for immediate entry into positions in industrial and government research laboratories, and for graduate study in biophysics, solid-state physics, or high energy physics. Many undergraduates go on to obtain graduate degrees not only in physics, but in engineering disciplines, the health sciences, and computer science as well.

A student completing a BS program in Physics at IIT will:
- Develop exceptional problem-solving ability
- Gain experience with instrumentation and measurement processes
- Develop mathematics and computational skills
- Gain a wide knowledge of physics as it applies both to the everyday world and to understanding nature's secrets.

Bachelor of Science in Physics

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Requirements</td>
<td>55</td>
</tr>
<tr>
<td>PHYS 100, 123, 221, 223, 240, 300, 304, 308, 309, 348, 405, 406, 413, 414, 427, 428, 440, 485 (2)</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Mathematics Electives</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 124, 125</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Physics Electives</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>128</td>
</tr>
</tbody>
</table>
Physics Curriculum

Semester 1 Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 123</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 100</td>
<td>Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 2 Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 221</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 3 Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 223</td>
<td>General Physics III</td>
<td>4</td>
</tr>
<tr>
<td>CS 105</td>
<td>Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Science Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 4 Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 348</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 240</td>
<td>Computational Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 252</td>
<td>Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Science Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 5 Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 308</td>
<td>Classic Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 300</td>
<td>Instrumentation Lab</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Science Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 6 Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 309</td>
<td>Classic Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 304</td>
<td>Kinetic Theory and Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 427</td>
<td>Advanced Physics Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>Physics Elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physics Elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 7 Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 405</td>
<td>Quantum Theory I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 428</td>
<td>Advanced Physics Laboratory II***</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 413</td>
<td>Electricity and Magnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 485</td>
<td>Physics Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Physics Elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 8 Credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 406</td>
<td>Quantum Theory II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 440</td>
<td>Computational Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 414</td>
<td>Electricity and Magnetism II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 485</td>
<td>Physics Colloquium</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physics Elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours

128

* Any advanced undergraduate or graduate physics course selected in consultation with the academic advisor.

** PHYS 428 may be substituted by a semester of research with permission of the department.
Post-Baccalaureate Premedical Program

The purpose of the Post-Baccalaureate Premedical Program is to meet the needs of college graduates who have decided to pursue a medical education but who have taken none or only some of the basic science courses required for admission to medical school. The objective of the program is to provide rigorous education in all areas of the premedical sciences which are required for admission to any medical, osteopathic, or veterinary school in the country. Students who satisfactorily complete the program will be awarded a Certificate in Premedical Sciences.

Coursework

Students sufficiently prepared in mathematics and English who enter the program in the Fall semester can expect to complete the program in two years. The third year is known as the glide year. This is the year between completing the program and entering medical school. For most students, the glide year provides the opportunity to take additional courses or to deepen their exposure to medicine through full-time employment in a clinical setting or in the arts and sciences:

• One Year of College English, including a significant amount of expository writing
• One Year of College Mathematics, beyond precalculus, including at least one term of calculus. Statistics is recommended as the second mathematics course
• One Year of General Physics, including laboratory
• One Year of General Chemistry, including laboratory
• One Year of Organic Chemistry, including laboratory
• One Year of Biology, including laboratory, with significant emphasis in molecular and cellular biology

Advising and Support

On the main campus of Illinois Institute of Technology there are a number of advisors who constitute the Premedical Advisory Committee, see: http://www.iit.edu/~premed/. Post-Baccalaureate premedical students will be assigned an advisor who will be available to counsel them as they plan their program of study and as they prepare their applications to medical school. A number of academic support services will be made available to students in the Post-Baccalaureate Premedical Program. In the University’s Academic Resource Center, students can meet with tutors at no expense for additional help in their premedical courses. In the Premedical Office, support staff will collect and send letters of recommendation to medical schools. Each year the Premedical Office and the IIT Honors Medical Society host a number of events specifically for premedical students including special seminars of medical interest and forums in which current students can learn from experiences of those who have already taken the MCAT or been admitted to medical school. The Princeton Review offers MCAT preparatory courses at reduced cost to IIT students in the Spring semester each year. Post-Baccalaureate Premedical Students are invited and encouraged to attend weekly colloquia in the biological, chemical, and physical sciences and in other departments offering seminars of medical interest. Finally, IIT’s location in the city of Chicago is a special advantage to students in the Post-Baccalaureate Premedical Program. The city is home to six medical schools and numerous hospitals and medical research centers. It is also home to the American Medical Association. This concentration of medical practice will provide IIT post-baccalaureate premedical students with a wide variety of opportunities to gain experience in both clinical settings and in medical research through volunteer service and paid employment.
Biological, Chemical, and Physical Sciences

Academic Standards

Medical schools expect successful applicants to possess excellent grounding in the premedical sciences. The quality of a student’s preparation is measured by the grades earned in premedical courses. For this reason, IIT post-baccalaureate premedical students will be held to high academic standards. At a minimum, students must maintain a cumulative grade point average of 3.00 to remain in the program. Likewise, medical schools have high expectations about an applicant’s character. Students in the IIT Post-Baccalaureate Premedical Program are expected to conduct themselves with honesty and integrity inspiring confidence in their abilities to assume the responsibilities of medical practice.

Admissions Eligibility

The student must hold the degree of Bachelor of Arts or Science from an accredited college or university in the United States or an equivalent degree from an institution outside the United States. At a minimum, successful applicants must possess a cumulative undergraduate grade point average of 3.00. In most cases, students will not be eligible for admission if they have applied to medical school previously or have completed their premedical preparation elsewhere within the last five years. This is not a remedial program. Students must submit a complete application package to the undergraduate admissions office for full consideration.

Certificate in Premedical Sciences*

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Requirements</td>
<td></td>
</tr>
<tr>
<td>CHEM 124, 125, 237, 239, 240</td>
<td>17</td>
</tr>
<tr>
<td>Biology Requirements</td>
<td></td>
</tr>
<tr>
<td>BIOL 107, 109, 115, 117</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td></td>
</tr>
<tr>
<td>MATH 151, PSYC 203</td>
<td>8</td>
</tr>
<tr>
<td>Physics Requirements</td>
<td></td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td>8</td>
</tr>
<tr>
<td>Total Hours</td>
<td>41</td>
</tr>
</tbody>
</table>

* Students who complete all of these courses (or their equivalents) with a GPA of 3.00 will be awarded a Certificate in Premedical Sciences. A minimum of 15 credit hours must be completed at IIT to be awarded the Certificate in Premedical Sciences.
Premedical Sciences Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Clinical Volunteer Service</td>
<td>0</td>
</tr>
<tr>
<td>Total Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 125 Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 203 Undergrad Stats for Behavioral Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Volunteer Service</td>
<td>0</td>
</tr>
<tr>
<td>Total Hours</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 237 Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 107 General Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 109 General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Research Volunteer Service</td>
<td>0</td>
</tr>
<tr>
<td>Total Hours</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 239 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 240 Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 115 Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 117 Human Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Research Volunteer Service</td>
<td>0</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credit Hours: **41**

Prepare and take MCAT in April.

Summer Session: Submit Medical School Applications

Semesters 5 & 6 – The Glide Year

The following courses are recommended but not required: BIOL 214 - Genetics; BIOL 320 - Biological Literature; BIOL 401 - Introductory Biochemistry; BIOL 402 - Metabolic Biochemistry; BIOL 430 - Animal Physiology; BIOL 445 - Cell Biology. Full-time employment in health care or in medical research is strongly encouraged during this year.
Biological, Chemical, and Physical Sciences

Other Degree Programs in Biological, Chemical and Physical Sciences

Beyond the traditional degree programs, the department offers several specialized programs designed for students who are interested in studying science and who wish to pursue a postgraduate education. Detailed programs of study for each of the programs listed below are available from the department.

Research Honors Program

This program is specifically designed for students who plan to pursue an advanced research degree. The program of study is based on the traditional degrees but is accelerated to include a full year of research experience in a faculty research lab, culminating in a senior thesis. In addition, students selected for this program may have guaranteed stipends for the summers after their sophomore and junior years in addition to any other scholarships that have been awarded.

Combined B.S./M.D. Program

For detailed information, see page 162.

Honors Law Program

Students in any of the BCPS programs are eligible for this program (see page 161). For students in biology, chemistry, or physics, this is a seven-year program which can be accelerated under special conditions approved by the student’s advisor.

Five-Year Financial Markets Program

This program combines an undergraduate science degree with the Master of Science in Financial Markets. The five-year combined B.S./M.S. program guarantees admission to the master’s program, provided the student maintains an undergraduate GPA of 3.0 and obtains a satisfactory score on the GMAT. Students enrolled in any of the BCPS programs are eligible for this program.
Biomedical Engineering

Department Web site: www.iit.edu/~bme

Mission
The mission of the biomedical engineering undergraduate program at IIT is to educate students in the fundamentals of biomedical engineering. This foundation consists of a broad exposure to the chemical, mathematical, physical, and biological sciences, coupled with the appropriate technical and engineering skills to be able to fill diverse professional roles in industry, graduate school, and the medical professions.

Biomedical Engineering at IIT
Biomedical engineering is an interdisciplinary major in which the principles and tools of traditional engineering fields, such as mechanical, materials, electrical, and chemical engineering which are integrated with the chemical, physical and biological sciences, are applied towards a better understanding of physiological processes in humans or towards the solution of medical problems. Engineering will continue to play an increasingly important role in advancing medical treatment, developing biotechnology, and improving health-care delivery. By its very nature, biomedical engineering is expansive and requires a broad and integrated foundation in the physical, chemical, mathematical, and biological sciences.

Program Outcomes and Objectives
At the undergraduate level, the department offers a four-year engineering curriculum leading to a B.S. in Biomedical Engineering.

Our graduates will attain the following program outcomes by the time of their graduation:

- An ability to apply knowledge of mathematics, science, and engineering to the solution of biomedical engineering problems
- An ability to design and conduct experiments as well as to analyze and interpret data
- An ability to design a biomedical engineering system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- An ability to function on multi-disciplinary teams
- An ability to identify, formulate, and solve engineering problems
- An understanding of professional and ethical responsibility
- An ability to communicate effectively based upon analytical and critical thinking skills
- The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- A recognition of the need for and an ability to engage in life-long learning
- A knowledge of contemporary issues relevant to biomedical engineering
- An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- An understanding of biology and physiology, and the capability to apply advanced mathematics, science, and engineering to solve the problems at the interface of engineering and biology
- The ability to make measurements on and interpret data from living systems, addressing the problems associated with the interaction between living and non-living materials and systems

Our educational objectives describe the qualities and performance of our alumni:

- Our alumni possess the quantitative, analytic, and critical thinking skills necessary for solving biomedical engineering problems in industry, graduate or professional graduate programs.
- Our alumni possess the ability to employ biomedical engineering laboratory skills in industry, graduate or professional graduate programs.
- Our alumni possess the requisite written and oral communication skills necessary to interact with health care professionals, engineers or scientists in industry, graduate or professional graduate programs.
- Our alumni possess the ability to work in teams in industry, graduate or professional graduate programs.
- Our alumni possess the sense of responsibility and ethics of a professional engineer in industry, graduate or professional graduate programs.
Biomedical Engineering

Faculty

Chair
Vincent Turitto
314B Wishnick Hall
312.567.5324

Undergraduate Program Director
Mark Anastasio
215 Wishnick Hall
312.567.3926

Professor
Turitto

Associate Professors
Anastasio, Arfanakis, Derwent, Mogul, Troyk

Assistant Professors
Brey, Kamper, Papavasiliou

Research Professor
Opara

Senior Lecturer
Fagette, Hall

Lecturer
Gatchell

Faculty Emeritus
Arzbaecher

Areas of Specialization (Tracks)

The biomedical program has three areas of specialization (or tracks): cell and tissue engineering, medical imaging, and neural engineering. These areas while distinct in their concept are not entirely separate since core exposure to the physical, chemical, biological, and engineering sciences is common to all and there is potential for considerable crossover among the areas at the upper division level. This is indicated by the track course options.

Medical School Admission

For information regarding admission to medical schools, see page 162 or go to www.premed.iit.edu.
Cell and Tissue Engineering

This area involves the more recent attempts to understand and attack biomedical problems at the microscopic level and to use such knowledge to begin to “engineer” replacement tissues and organs from individual cells. Knowledge of anatomy, biochemistry, and the mechanics of cellular and sub-cellular structures is necessary in order to understand disease processes and to be able to intervene at very specific sites. With such knowledge a number of approaches have been or are being developed. These range from the development of miniature devices to deliver compounds that can stimulate or inhibit cellular processes at precise target locations in order to promote healing or inhibit disease formation and progression to the newer techniques that have produced replacement skin and one day will produce heart valves, coronary vessels, and even whole hearts. This area also includes the development of artificial materials used for implantation. Understanding the properties and behavior of living material is vital in the design of implant materials. The use of materials to place in the human body has been practiced for over 100 years, but it remains as one of the most difficult tasks faced by the biomedical engineer. Certain metal alloys, ceramics, polymers, and composites have been used as implantable materials. Biomaterials must not only function normally over the lifespan of the recipient but also, be nontoxic, non-carcinogenic, chemically inert, stable, and mechanically strong enough to withstand the repeated forces of a lifetime. Few materials meet all such specifications. Newer biomaterials are being developed which incorporate proteins or living cells in order to provide a truer biological and mechanical match for the living tissue.

Bachelor of Science in Biomedical Engineering: Cell and Tissue Engineering Track

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering Requirements</td>
<td>24</td>
</tr>
<tr>
<td>BME 100, 200, 310, 315, 320, 330, 405, 419, 420, 433, 490</td>
<td></td>
</tr>
<tr>
<td>Cell and Tissue Engineering Requirements</td>
<td>36</td>
</tr>
<tr>
<td>CS 105, MMAE 200, MS 201, CHEM 237, 239, CHE 202, BME 301, 308, 435, 482, two BME Electives (6 credit hours)</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 124, 125</td>
<td></td>
</tr>
<tr>
<td>Biology Requirements</td>
<td>7</td>
</tr>
<tr>
<td>115, 117, 490</td>
<td></td>
</tr>
<tr>
<td>Electrical and Computer Engineering Requirement</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Humanities and Social Science Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>131</td>
</tr>
</tbody>
</table>
Biomedical Engineering Curriculum: Cell and Tissue Track

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 100 Introduction to the Profession</td>
<td>3</td>
<td>BIOL 115 Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
<td>CHEM 125 Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>BIOL 117 Human Biology Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>球迷 00 Introduction to the Profession</td>
<td>3</td>
<td>KB T 00 Introduction to Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211 Circuit Analysis I</td>
<td>3</td>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Total Hours</td>
<td>18</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MS 201 Materials Science</td>
<td>3</td>
<td>PHYS 221 General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
<td>BME 200 BME Applications of MATLAB</td>
<td>1</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
<td>BME 315 Instrumentation Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MS 201 Materials Science</td>
<td>3</td>
<td>BME 330 Analysis of Biosignals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>CHE 202 Material and Energy Balances</td>
<td>3</td>
</tr>
<tr>
<td>BME 200 BME Applications of MATLAB</td>
<td>1</td>
<td>CHEM 237 Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>BME Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 301 Biofluid Mechanics</td>
<td>3</td>
<td>BME 301 Biofluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 320 Biofluids Laboratory</td>
<td>1</td>
<td>BME 310 Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 335 Thermodynamics of Living Systems</td>
<td>3</td>
<td>CHEM 239 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 310 Biomaterials</td>
<td>3</td>
<td>BME 482 Mass Transport for BME</td>
<td>3</td>
</tr>
<tr>
<td>BME 433 Biostatistics</td>
<td>3</td>
<td>BME 408 Reaction Kinetics</td>
<td>3</td>
</tr>
<tr>
<td>BME 490 Senior Seminar</td>
<td>1</td>
<td>BME 430 Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
<td>BME 405 Physiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BME Elective*</td>
<td>3</td>
<td>BME 419 Introduction to Design</td>
<td>2</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 420 Design Concepts in BME</td>
<td>3</td>
<td>BME 420 Design Concepts in BME</td>
<td>3</td>
</tr>
<tr>
<td>BME 453 Biostatistics</td>
<td>3</td>
<td>BME 490 Senior Seminar</td>
<td>1</td>
</tr>
<tr>
<td>BME 490 Senior Seminar</td>
<td>1</td>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>BME Elective*</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
</tbody>
</table>

| **Total Credit Hours** | **131** |

* BME elective must be an engineering course in BME, ECE, CHE, or MMAE.
Biomedical Engineering

Medical Imaging

This area combines knowledge of unique physical properties of electromagnetic and acoustic energy with high-speed electronic data processing, signal analysis, and rapid display to generate an image of a body part or more recently of a bodily function. Often, these images can be obtained with minimal or completely noninvasive procedures, making them less painful and more readily repeatable than invasive techniques. Moreover, many of the devices require no ionizing radiation doses lessening the danger of secondary radiation effects on the patient. The students learn the theoretical bases underlying the common forms of medical imaging, such as magnetic resonance imaging (MRI), computerized axial tomography scanning (CAT-scan), positron emission tomography (PET), and the limitations and the applicability of such techniques.

Bachelor of Science in Biomedical Engineering: Medical Imaging Track

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering Requirements</td>
<td>24</td>
</tr>
<tr>
<td>BME 100, 200, 310, 315, 320, 330, 405, 419, 420, 433, 490</td>
<td></td>
</tr>
<tr>
<td>Medical Imaging Requirements</td>
<td>35/36</td>
</tr>
<tr>
<td>CS 201, ECE 213, 437, 475, 481, BME 309, 438, 443, 445, PHYS 224 or CHEM 237, MATH 333 or CHEM 239, one BME Elective (3 credit hours)</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 124, 125</td>
<td></td>
</tr>
<tr>
<td>Biology Requirements</td>
<td>7</td>
</tr>
<tr>
<td>BIOL 115, 117, 430</td>
<td></td>
</tr>
<tr>
<td>Electrical and Computer Engineering Requirement</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Humanities and Social Science Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 132/133
Biomedical Engineering Curriculum: Medical Imaging Track

Semester 1
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 100</td>
<td>Introduction to the Profession</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 115</td>
<td>Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 125</td>
<td>Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 117</td>
<td>Human Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 211</td>
<td>Circuit Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>CS 201</td>
<td>Accelerated Intro to Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>MATH 252</td>
<td>Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 4
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ECE 213</td>
<td>Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 224</td>
<td>Thermal and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BME 200</td>
<td>BME Applications of MATLAB</td>
<td>1</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>17/18</td>
</tr>
</tbody>
</table>

Semester 5
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 309</td>
<td>Biomedical Imaging and Sensing</td>
<td>3</td>
</tr>
<tr>
<td>BME 315</td>
<td>Instrumentation Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BME 330</td>
<td>Analysis of Biosignals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 333</td>
<td>Matrix Algebra and Complex Variables</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 239</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>BME Elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 6
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 310</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 320</td>
<td>Fluids Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 443</td>
<td>Biomedical Instrumentation/Electronics</td>
<td>3</td>
</tr>
<tr>
<td>BME 445</td>
<td>Quantitative Neural Function</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 7
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 430</td>
<td>Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 405</td>
<td>Physiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BME 419</td>
<td>Introduction to Design</td>
<td>2</td>
</tr>
<tr>
<td>ECE 437</td>
<td>Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497</td>
<td>Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>BME Elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 8
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 438</td>
<td>NeuroImaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 420</td>
<td>Design Concepts in BME</td>
<td>3</td>
</tr>
<tr>
<td>BME 433</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>BME 490</td>
<td>Senior Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ECE 481</td>
<td>Image Processing</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours: 132-133

* BME elective must be an engineering course in BME, ECE, CHE, or MMAE.
Neural Engineering

This area uses fundamental and applied engineering techniques to help solve basic and clinical problems in the neurosciences. At the fundamental level it attempts to understand the behavior of individual neurons, their growth, signaling mechanisms between neurons, and how populations of neurons produce complex behavior. Such information has broad application to a better understanding of the communication that occurs between the various parts of the nervous system and the brain. For example, such an understanding can be applied to the development of replacement parts for impaired neural systems, such as the auditory, visual, and motor systems as well as achieving a better understanding of how normal and diseased systems work.

Bachelor of Science in Biomedical Engineering: Neural Engineering Track

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering Requirements</td>
<td>24</td>
</tr>
<tr>
<td>BME 100, 200, 310, 315, 320, 330, 405, 419, 420, 433, 490</td>
<td></td>
</tr>
<tr>
<td>Neural Engineering Requirements</td>
<td>37/38</td>
</tr>
<tr>
<td>CS 115, ECE 212, 213, 214, 218, BME 309, 443, 445, 438, MATH 333 or CHEM 237, Technical Elective or CHEM 239, three BME Electives (9 credit hours)</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>8</td>
</tr>
<tr>
<td>CHEM 124, 125</td>
<td></td>
</tr>
<tr>
<td>Biology Requirements</td>
<td>7</td>
</tr>
<tr>
<td>BIOL 115, 117, 430</td>
<td></td>
</tr>
<tr>
<td>Electrical and Computer Engineering Requirement</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Humanities and Social Science Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>132/133</td>
</tr>
</tbody>
</table>
Biomedical Engineering Curriculum: Neural Engineering Track

Semester 1 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 100 Introduction to the Profession</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 2 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 115 Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 117 Human Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 125 Principles of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 3 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>ECE 211 Circuit Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 212 Analog and Digital Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ECE 218 Digital Systems</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 4 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ECE 213 Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 214 Analog and Digital Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>BME 200 BME Applications of MatLab</td>
<td>1</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 5 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 309 Imaging and Sensing</td>
<td>3</td>
</tr>
<tr>
<td>BME 330 Analysis of Biosignals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>BME 315 Instrumentation Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MATH 333 Matrix Algebra and Complex Variables</td>
<td>3/4</td>
</tr>
<tr>
<td>CHEM 237 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BME Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17/18</td>
</tr>
</tbody>
</table>

Semester 6 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 310 Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 320 BioFluids Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 443 Biomedical Instrumentation/Electronics</td>
<td>3</td>
</tr>
<tr>
<td>BME 445 Quantitative Neural Function</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 239 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 7 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 430 Animal Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 405 Physiology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>BME 419 Introduction to Design</td>
<td>2</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>BME Elective*</td>
<td>3</td>
</tr>
<tr>
<td>BME Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 8 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 420 Design Concepts in BME</td>
<td>3</td>
</tr>
<tr>
<td>BME 438 NeuroImaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 490 Senior Seminar</td>
<td>1</td>
</tr>
<tr>
<td>BME 433 Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours: 132-133

* BME elective must be an engineering course in BME, ECE, CHE, or MMAE.
Stuart School of Business

Department Web site: www.stuart.iit.edu

Through its programs in leadership, interprofessional projects, entrepreneurship, and business, the undergraduate business program helps prepare a new generation of men and women qualified to lead the companies and organizations of tomorrow in the face of a rapidly evolving global economy and technology base. The School delivers an innovative educational experience that results in unique value propositions for our students, faculty, and partners.

The Stuart School of Business offers two undergraduate business degrees:

- **Bachelor of Science in Business Administration** – The BSBA offers concentrations in entrepreneurship, finance, human resources, international business, and marketing that enable students to earn a degree that matches their career goals and aspirations.

- **Bachelor of Science in Business Administration and Applied Science** – The BSBA and Applied Science program provides students with the opportunity to combine their business education with concentrations in applied mathematics, chemistry, construction management, information technology, life sciences, material sciences, or mechanical engineering.

These are distinctive programs designed to educate students to deal with the problems of an increasingly complex business environment where an understanding of emerging technology is central to the practice of business administration and preparation for the next economy.

The objectives of both of these programs are to provide future business managers and leaders with:

- A solid technological foundation for the new and emerging business environment
- A fundamental grounding in the core competencies of business including accounting, economics, finance, marketing, management, and social skills
- An understanding of the interdisciplinary nature of management in today’s complex businesses, which compete in the global economy

The Interprofessional Projects (IPRO) Program

The Interprofessional Projects Program, which also includes Entrepreneurship Projects Program (EnPRO), provides all undergraduate students with the opportunity to work on multidisciplinary project teams to solve real world problems. These projects develop communication, teamwork, and leadership skills, as well as an awareness of economic marketing, ethical and social issues. All undergraduate business students are required to complete at least an EnPRO, which provides a “hands-on” opportunity to develop a real-world business idea. For general education requirements, see page 27.

The Leadership Academy

The Leadership Academy identifies and supports students with exceptional leadership potential and provides a leadership development curriculum for all undergraduates.
Faculty

Dean of the Stuart School of Business
Harvey Kahalas

Associate Dean
Thomas C. Anderson
Room 4A5 IGT Central
312.567.3983

Associate Dean
Siva K. Balasubramanian

Professors
Balasubramanian, Bilson, Erramilli, Geisler, Goldhar, Hassan, Kahalas, Knowles, Ong, Tourk

Associate Professors
Bariff, Khalili, Liao, Wickramasinghe

Assistant Professors
Durango-Cohen, Harris, Khalili, Sabbaghi, J. Sun, H. Wang, T. Wu, Zeng

Clinical Professor
Twombly

Clinical Associate Professors
T. Anderson, C. Hamilton, Pistrui

Clinical Assistant Professor
Jabbari

Industry Professor
Gorham

Industry Associate Professor
Nassos

Research Professor
Thomopoulos

Senior Lecturers
Braband, Bredine, Jabbari, S. Mueller

Lecturers
Van Vilet, Wojcik

Instructor
Chaudoin, Phillips

Faculty Emeriti
Calero, Chung, Smith
Bachelor of Science in Business Administration

The Bachelor of Science in Business Administration provides a solid foundation in business fundamentals along with a basic grounding in science. Core business competencies include accounting, economics, statistics, finance, business law, marketing, management, entrepreneurship, and leadership. Students also take a business specialization that allows them to develop a depth of knowledge in a business area. Currently, available specializations are in Entrepreneurship, Finance, Marketing, International Business, and Human Resource Management. Individualized specializations can be developed to meet the special needs of a student.

Bachelor of Science in Business Administration

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Requirements</td>
<td></td>
</tr>
<tr>
<td>BUS 100, 211, 212, 221, 301, 305, 311, 321, 341, 351, 361, 371, 402, 423, 480, ECON 151 and 152</td>
<td>49</td>
</tr>
<tr>
<td>Business Electives</td>
<td></td>
</tr>
<tr>
<td>At least 12 hours in a designated business specialization. Courses are selected individually with the student’s advisor. Specializations include: Entrepreneurship, Finance, Marketing, Human Resource Management, and International Business. The International Business specialization requires a semester abroad.</td>
<td>18</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td></td>
</tr>
<tr>
<td>MATH 120, 121</td>
<td>6</td>
</tr>
<tr>
<td>Science Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Humanities and Social Science Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td></td>
</tr>
<tr>
<td>CS 105</td>
<td>2</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td></td>
</tr>
<tr>
<td>One of which must be an entrepreneurial IPRO.</td>
<td>6</td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>126</td>
</tr>
</tbody>
</table>
Business Administration Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 100 Introduction to the Profession</td>
<td>3</td>
</tr>
<tr>
<td>ECON 151 Economics of the Firm</td>
<td>3</td>
</tr>
<tr>
<td>MATH 120 Business Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>Science Elective</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 221 Stats for Managerial Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>ECON 152 National and Global Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 121 Business Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 211 Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BUS 301 Theory of Organization/Management</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 212 Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BUS 305 Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>BUS 341 Business Law</td>
<td>3</td>
</tr>
<tr>
<td>BUS 351 Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 311 Strategic Cost Management</td>
<td>3</td>
</tr>
<tr>
<td>BUS 321 Management Science</td>
<td>3</td>
</tr>
<tr>
<td>BUS 361 Introduction to Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>BUS 371 Introduction to Marketing</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO/EnPRO</td>
<td>3</td>
</tr>
<tr>
<td>Business Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Business Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 423 Management Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>IPRO/EnPRO*</td>
<td>3</td>
</tr>
<tr>
<td>Business Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Business Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 402 Leadership Seminar</td>
<td>1</td>
</tr>
<tr>
<td>BUS 480 Business Strategy</td>
<td>3</td>
</tr>
<tr>
<td>Business Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 126

* At least 12 semester hours in a designated specialization.
Bachelor of Science in Business Administration and Applied Science

The Bachelor of Science in Business Administration and Applied Science provides a solid foundation in business fundamentals along with an excellent technology foundation which includes a minimum of 51 hours of mathematics, science, and engineering courses. Core business competencies include accounting, economics, statistics, finance, business law, marketing, management, entrepreneurship, and leadership. The technology curricula includes core mathematics and sciences and a specialization in a technology discipline that will help prepare students to work in a technology based industry. Specializations include life sciences, chemistry, information technology, construction management, material science, mechanical engineering, and environmental management.

Bachelor of Science in Business Administration and Applied Science

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Requirements</td>
<td>49</td>
</tr>
<tr>
<td>BUS 100, 211, 212, 221, 301, 305, 311, 321, 341, 351, 361, 371, 402, 423, 480, ECON 151 and 152</td>
<td></td>
</tr>
<tr>
<td>Business Electives</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>10</td>
</tr>
<tr>
<td>MATH 151, 152</td>
<td></td>
</tr>
<tr>
<td>Science Requirements</td>
<td>15</td>
</tr>
<tr>
<td>CHEM 124, PHYS 123, 221, BIOL 107</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Science Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 115</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>One of which must be an entrepreneurial IPRO.</td>
<td></td>
</tr>
<tr>
<td>Technical Specialization</td>
<td>23</td>
</tr>
<tr>
<td>Technical courses chosen individually with the student’s advisor to provide a specialization in a specific technology or technologies related to a specific industry. Specializations include: Chemistry, Life Sciences, Information Technology, Environmental Management, Construction Management, Material Science, and Mechanical Engineering.</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 131
Business Administration and Applied Science Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 100 Introduction to the Profession</td>
<td>3</td>
<td>BUS 221 Stats for Managerial Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>ECON 151 Economics of the Firm</td>
<td>3</td>
<td>ECON 152 National and Global Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 211 Financial Accounting</td>
<td>3</td>
<td>BUS 212 Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BUS 301 Theory of Organization/Management</td>
<td>3</td>
<td>BUS 305 Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 107 General Biology</td>
<td>3</td>
<td>BUS 341 Business Law</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>BUS 351 Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 311 Strategic Cost Management</td>
<td>3</td>
<td>IPRO/EnPRO</td>
<td>3</td>
</tr>
<tr>
<td>BUS 321 Management Science</td>
<td>3</td>
<td>Business Elective</td>
<td>2</td>
</tr>
<tr>
<td>BUS 361 Introduction to Entrepreneurship</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>BUS 371 Introduction to Marketing</td>
<td>3</td>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 423 Management Information Systems</td>
<td>3</td>
<td>BUS 402 Leadership Seminar</td>
<td>1</td>
</tr>
<tr>
<td>IPRO/EnPRO</td>
<td>3</td>
<td>BUS 480 Business Strategy</td>
<td>3</td>
</tr>
<tr>
<td>Business Elective</td>
<td>3</td>
<td>Technical Elective</td>
<td>2</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 131
Chemical and Biological Engineering

Department Web site: www.chbe.iit.edu

The department offers leading edge research and education programs in chemical engineering and biological engineering. These programs are aimed to prepare engineers for the technological challenges of the 21st century by providing students with:

- Fundamental knowledge and design capability in chemical, biological, and environmental engineering, food process engineering, and pharmaceutical engineering
- Advanced research programs in core competency areas
- Understanding of ethical, economic, and social issues that influence technology choices
- Leadership and communication skills
- Life-long learning capabilities

The objective of the undergraduate program is to educate chemical engineering students and prepare them for career in professional practice and/or for advanced studies at the graduate level. The program specifically aims to develop a new breed of engineers who are not only well schooled in the basics and fundamentals of chemical and biological engineering, but who also possess the skills necessary for success in today’s workplace. In recognition of the recent shift of the chemical engineering profession into a more prominent involvement in biotechnology and biological engineering, the department has redesigned the undergraduate curriculum in order to ensure that its graduates will possess additional knowledge and skills in biology and biological engineering as predicated by the changing needs of industry.

A B.S. degree is offered in chemical engineering. M.S., Professional Master’s, and Ph.D. degree programs are offered in chemical engineering. A Professional Master’s degree is offered in biological engineering. M.S. and Professional Master’s degree programs are also offered in food processing engineering, chemical engineering/computer science, and gas engineering. The department also offers a B.S./M.D. program in engineering and medicine (see page 162) and a combined undergraduate/graduate law program (see page 161).

Faculty

Chair
Jai Prakash, Acting Chair
Room 127 Perlstein Hall
312.567.3040

Associate Chair for Undergraduate Affairs
Satish J. Parulekar
Room 127 Perlstein Hall
312.567.3044

Professors
J. Anderson (IIT President), Arastoopour (Henry R. Linden Professor of Engineering), Cinar (Dean of the Graduate College and Associate Vice Provost for Research), Gidaspow (Distinguished University Professor), Myerson (Phillip Danforth Professor of Engineering), Parulekar, Prakash (Director of Center of Excellence for Electrochemical Science and Engineering), Schieber, Teymour (Johnson Polymer Professor), Venerus (Hyoysung S.R. Cho Professor of Chemical and Biological Engineering and Director of Center of Excellence in Polymer Science and Engineering), Wasan (Motorola Professor and Vice President for International Affairs)

Associate Professors
Abbasian (Gas Technology Institute Associate Professor), Chmielewski, Prez-Luna

Assistant Professor
Ramani

Lecturer
Aderangi (Director of Undergraduate Laboratory)

Research & Teaching Professors
Al-Hallaj (Coordinator of the Renewable Energy Program), Linden (Max McGraw Professor and Director of Energy & Power Center), Nikolov, Selman, Zdunek

Research Faculty
Ivanov, Plomp, Sandi, Sun

Adjunct Professors
R. Anderson, Caracotsios, Faibish, Hatzivramidis, Jacobsen, Lindahl, Radovich, Sadler, Savcedo, Zale

Faculty Emeriti
Bernstein, Swanson
Chemical and Biological Engineering

Chemical Engineering

Chemical engineering is concerned with the design, development, and management of facilities that convert raw materials into useful products. The engineer must assume responsibility for the economical use of the raw materials, preservation of the environment, and profitability of the operation. The chemical engineering program has been designed to provide both the engineering competence and the professional skills necessary to succeed in this endeavor. In order to achieve this objective, the curriculum incorporates coursework in both of these areas throughout the four-year duration of the program.

Coursework

The chemical engineering curriculum emphasizes basic knowledge and applications of transport processes, thermodynamics and kinetics of processes, automatic control, and design, as well as fundamental sciences, mathematics, and engineering sciences. Design experience is spread across the curriculum, beginning with the Introduction to the Profession courses. Equipment design is emphasized in courses such as Fluid Mechanics, Heat and Mass-Transfer Operations, Thermodynamics, and Chemical Reaction Engineering. Control-system design is practiced in the Process Control course. Process modeling, simulations and optimization are discussed and practiced in Transport Phenomena, Process Modeling and System Theory, Numerical and Data Analysis, Statistical Tools for Engineering, and Process Control courses. The capstone design courses (Chemical Process Design and Process Design IPRO) integrate these design concepts and practice process design and optimization. In addition to engineering competence, the program also examines the economic, environmental, and societal implications of chemical engineering.

The Interprofessional Project Experience

Students in the chemical engineering program must be enrolled in six credits of Interprofessional Projects according to the following format:
- CHE/IPRO 296 Introduction to IPROs (1 credit)
- IPRO 497 Interprofessional Project (3 credits)
- CHE/IPRO 496 Design IPRO (2 credits)

IPRO 497 provides the opportunity to enroll in an IPRO offered by any academic unit. CHE/IPRO 296 and CHE/IPRO 496 create a package to accomplish interdisciplinary teamwork for process design. CHE/IPRO 496 students attend one lecture weekly on process design and a weekly two-hour meeting with the expanded IPRO group and their project advisor. The expanded IPRO group consists of the CHE/IPRO 496 students, CHE/IPRO 296 students and students from other academic units who have registered for the relevant IPRO 497 sections (3 credit hours). CHE/IPRO 296 students provide support to the specific design activity through literature survey, data generation and use of design software as appropriate. CHE/IPRO 496 students are responsible for developing and designing the process. IPRO 497 students enrich the project by extending the work into their areas of specialization.

Professional Training

Professional training is stressed in the design of the chemical engineering curriculum. Because engineering is largely a team effort, the department develops the individual’s ability to work effectively as a team member. Group projects are assigned starting with the Introduction to the Profession course. Laboratory course and capstone design course projects are conducted by teams of students. The laboratory work is designed to reinforce the concepts developed in the lectures and to show the application of chemical engineering principles to the solution of real-world problems. Because individual attention is so important to the student’s growth, laboratory sections are small and a high-level of personal contact between student and instructor is maintained. Students are encouraged to become involved with state-of-the-art research projects at the undergraduate level. The industry/university co-op program is available to students who would like to use one or more extra semesters any time after their sophomore year to work on an internship in industry.
Specialized Programs

In addition to the core curriculum, special programs exist to accommodate students who want to develop more extensive background in related areas. With their exposure to a wide range of industrial applications and problems, students are better equipped to make a decision to explore an area of interest in depth. Professional specializations are available in:

- Energy/Environment/Economics (E³)
- Environmental Engineering
- Polymer Science and Engineering
- Bioengineering
- Process Design and Operation

Students may also choose a minor program (see pages 156–158). All students must include in their minor program, or as a technical elective, CHE 426 (Statistical Tools for Engineers) or at least one three-credit-hour engineering science course. Students who plan to go to graduate school are advised to take CHE 535 (Applications of Mathematics to Chemical Engineering) as a technical elective.

Bachelor of Science in Chemical Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering Requirements</td>
<td>43</td>
</tr>
<tr>
<td>CHE 100, 101, 202, 301, 302, 311, 317, 351, 406, 418, 423, 433, 451, 494</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirements</td>
<td>18</td>
</tr>
<tr>
<td>CHEM 125, 237, 239, 343, 344</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Electrical and Computer Engineering Requirement</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211 or 218</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td>12</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>CHE/IPRO 296, CHE/IPRO 496, IPRO 497</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>131</td>
</tr>
</tbody>
</table>
Chemical and Biological Engineering

Chemical Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 100 Introduction to the Profession I</td>
<td>2</td>
<td>CHE 101 Introduction to the Profession II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 125 Principles of Chemistry II*</td>
<td>4</td>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
<td>Total Hours</td>
<td>14</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 202 Material and Energy Balances</td>
<td>3</td>
<td>CHE 296 Introduction to IPRO**</td>
<td>1</td>
</tr>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
<td>CHE 301 Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237 Organic Chemistry I</td>
<td>4</td>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>CHEM 239 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
<td>CHEM 343 Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 302 Heat and Mass Transfer Operations</td>
<td>3</td>
<td>CHE 317 Chemical/Biological Engineering Lab I</td>
<td>2</td>
</tr>
<tr>
<td>CHE 311 Foundations of Bio Science for Engineers</td>
<td>3</td>
<td>CHE 451 Thermodynamics II</td>
<td>2</td>
</tr>
<tr>
<td>CHE 351 Thermodynamics I</td>
<td>3</td>
<td>CHE 433 Process Modeling and System Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211 Circuit Analysis I</td>
<td>3</td>
<td>CHEM 344 Physical Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 218 Digital Systems</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
<td>Total Hours</td>
<td>17</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 418 Chemical/Biological Engineering Lab II</td>
<td>2</td>
<td>CHE 406 Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>CHE 423 Chemical Reaction Engineering</td>
<td>3</td>
<td>CHE 439 Numerical and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHE 435 Process Control</td>
<td>3</td>
<td>IPRO 496 Design IPRO**</td>
<td>2</td>
</tr>
<tr>
<td>CHE 494 Process Design</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Total Credit Hours 131

* Initial placement in CHEM 125 requires consent of the BCPS department.
** Satisfies part of the General Education Requirement for Interprofessional Projects. Only CHE majors may register for CHE/IPRO 296 and CHE/IPRO 496.

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.
Chemical and Biological Engineering

Professional Specializations

Students choosing one of the professional specializations should take a total of four courses in the specialization area.

Energy/Environment/Economics (E³)

Program advisor: J. Abbasian

Students must take the following course:

CHE 543 Energy, Environment, Economics

In addition, they should choose at least one course from each of these two areas:

Energy Sources, Conversion, Utilization, and Distribution

CHE 465 Electrochemical Energy Conversion
CHE 467 Fuel Cell System Design
CHE 481 Fundamentals of Reservoir Engineering
CHE 483 Synthetic Energy
CHE 489 Fluidization
CHE 491 Undergraduate Research
CHE 517 Gas Utilization Technologies and Economics
CHE 520 LNG Fundamentals and Technologies
CHE 522 Fundamentals of Combustion
CHE 541 Renewable Energy Technologies
CHE 565 Electrochemical Engineering
CHE 567 Fuel Cell Fundamentals
CHE 582 Interfacial and Colloidal Phenomena
ECE 319 Fundamentals of Power Engineering
ECE 411 Power Electronics
ECE 419 Power System Analysis
ECE 420 Analysis Methods in Power Systems
ECE 438 Control Systems
MMAE 423 Air Conditioning and Refrigeration
MMAE 424 Internal Combustion Engines
MMAE 425 Direct Energy Conversion

Environmental Engineering

Program advisor: D. Moschandreas

Students must take two courses from each of the following two areas:

Environmental Engineering

CHE 426 Statistical Tools for Engineers
ENVE 404 Water and Wastewater Engineering
ENVE 463 Introduction to Air Pollution Control
ENVE 485 Pollution Prevention
ENVE 491 Undergraduate Research

Civil Engineering

CAE 421 Risk Assessment Engineering
CAE 482 Hydraulic Design of Open Channel Systems
CAE 483 Environmental Systems for Building I
CAE 484 Environmental Systems for Building II
IPRO 497 In Energy/Environment Areas

Appropriate substitution may be made with the approval of the program advisor.

Polymer Science and Engineering

Program advisors: J. Schieber, D. Venerus

The program embraces polymer chemistry, characterization, structure and properties, as well as the manufacture of polymeric raw materials and their processing into finished products.

Students must take one of the following courses:

CHE 470 Introduction to Polymer Science
CHEM 470 Introduction to Polymer Science
MMAE 470 Introduction to Polymer Science

In addition, they should choose at least two courses from the following:

CHE 538 Polymerization Reaction Engineering
CHE 555 Polymer Processing
CHE 575 Polymer Rheology
CHE 581 Process & Apps. of Polymer Comp. Materials
CHEM 535 Advanced Polymer Chemistry
CHEM 537 Polymer Chemistry Laboratory
CHEM 542 Interfacial Characterization of Polymers
MMAE 483 Structure/Property Relation in Polymers
MMAE 487 Fiber Reinforced Polymer Comp. Materials
MMAE 579 Characterization of Polymers
MMAE 580 Structure and Property of Polymers
MMAE 581 Theory of Mechanical Behavior of Polymers
Chemical and Biological Engineering

Professional Specializations Continued

Students may take up to one course from the following:

- CHE 426 Statistical Tools for Engineers
- CHE 489 Fluidization
- CHE 491 Undergraduate Research
- CHE 582 Interfacial and Colloidal Phenomena
- FPE 541 Principles of Food Packaging
- MMAE 451 Finite Element Methods in Engineering
- MMAE 485 Manufacturing Processing

Appropriate substitution may be made with the approval of the program advisor.

Bioengineering

Program advisors: S. Parulekar and V. Pérez-Luna

Bioengineering has two career specializations:

Biomedical Engineering

Students must take the following three courses:

- BIOL 107 General Biology
- BIOL 115 Human Biology
- CHE 577 Bioprocess Engineering

One elective is chosen from the following:

- BIOL 214 Genetics
- BIOL 414 Genetics for Engineering Scientists

Biotechnology

Students must take the following course:

- CHE 577 Bioprocess Engineering

Three electives are chosen from the following:

- BIOL 107 General Biology
- BIOL 214 Genetics
- BIOL 414 Genetics for Engineering Scientists
- BIOL 401 Introductory Biochemistry
- BIOL 430 Animal Physiology
- BIOL 445 Cell Biology
- CHE 491 Undergraduate Research

Process Design and Operation

Program advisor: D. Chmielewski

For students interested in design, operation, monitoring, optimization, and control of chemical processes.

Two courses must be taken from the following:

- CHE 426 Statistical Tools for Engineers
- CHE 431 Artificial Intelligence Applications
- CHE 437 Discrete Time Systems and Computer Control
- CHE 507 Computer-Aided Design
- CHE 508 Process-Design Optimization
- CHE 528 Chemical Processing Analysis and Simulation
- CHE 530 Advanced Process Control
- CHE 532 Process Modeling
- CHE 560 Statistical Quality and Process Control

Two courses must be selected from the following (only one may be an ENVE course):

- CHE 402 Intro to Microelectronics Fabrication Tech.
- CHE 430 Petrochemical Process Operations and Design
- CHE 465 Electrochemical Energy Conversion
- CHE 475 Food Engineering I
- CHE 476 Food Engineering II
- CHE 489 Fluidization
- CHE 491 Undergraduate Research
- CHE 571 Food Process Engineering
- CHE 572 Advanced Food Process Engineering
- ENVE 463 Introduction to Air Pollution Control
- ENVE 476 Engineering Control of Industrial Hazards
- ENVE 485 Pollution Prevention
- ENVE 578 Industrial Gas Cleaning
- ENVE 580 Hazardous Waste Engineering
- FPE 521 Food Process Engineering
- FPE 522 Advanced Food Process Engineering
The objective of the civil engineering program is to educate graduates who are prepared to enter the civil engineering profession. Also, this program will prepare students to begin graduate studies in engineering. This program provides breadth in core sub-disciplines and depth in at least one area of specialization. Graduates of the program, who follow civil engineering as their career path, are qualified to be involved in an area related to civil engineering or pursuing a graduate or professional degree within several years following graduation from IIT. This degree program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

Civil engineering is the original of the engineering disciplines. With the increase in population, the growing complexity of industries, and changing urban centers, the civil engineer’s task - applying science to the control and utilization of the environment for the total benefit of mankind - represents a challenge unsurpassed in all of engineering.

The civil engineer often is confronted with conditions so variable and complex that they cannot be precisely defined by science and mathematics. Therefore, a knowledge of the arts and social sciences, as well as the physical sciences, is essential. In addition, because civil engineering requires overall planning of very large projects whose components involve many other disciplines, it is also necessary to have knowledge of management techniques. The goal of the civil engineering degree program is to provide an education that enables graduates to make far-reaching decisions that draw not only from technical knowledge but also from integrity and judgment.

In the professional courses, classroom lectures are supplemented by laboratory practice, including the study of materials, structural engineering, hydraulics, environmental engineering, geotechnical engineering, and surveying. The principal functional areas that are considered subdivisions of civil engineering are structural engineering, transportation engineering, geotechnical engineering, environmental engineering, water resources engineering, and construction management.

The Department of Civil, Architectural and Environmental Engineering provides introductory undergraduate education in these six subdisciplines of civil engineering and provides professional specializations in the areas of structural, geotechnical, transportation, civil-environmental, construction engineering, and architectural engineering. The department also offers graduate degree programs and conducts research in the areas of structural engineering, geotechnical engineering, transportation engineering, construction engineering and management, and environmental engineering.

Students may choose a professional specialization as described on the following pages, or one of the following minors: Air Force Aerospace Studies, Military Science and Naval Science (see pages 156–158).

Architecture students who plan to pursue a master’s degree in structural engineering should take CAE 303, 304, 307, 310, 315, 431 and 432. Students should consult the IIT Bulletin: Graduate Programs for additional details.

All civil engineering students are required to take the Fundamentals of Engineering (FE) examination during their senior year. The examination is offered by the State of Illinois in October and April. Students should contact the Department of Civil, Architectural and Environmental Engineering for information concerning this examination.
Faculty

Chair
Jamshid Mohammadi
Room 228 Alumni Memorial
312.567.3540

Associate Chair
John O'Leary
Room 228 Alumni Memorial
312.567.3546

Professors
Arditi, Mohammadi, Moschandreas, Noll, Pagilla, Shi

Adjunct Professors
Carreira, Domel, Gill, Jahedi, Kurzydlo, Lemming, Oskooie, Paintal, Rohrer

Associate Professors
P. Anderson, Budiman, O'Leary, Shen

Adjunct Associate Professor
Sriraj

Assistant Professors
Z. Li, Megri, Muehleisen

Adjunct Assistant Professor
Grabowski

Research Professors
Lue-Hing

Senior Lecturers
De Santiago, Novak, Snyder

Faculty Emeriti
Dygdon, Guralnick, Khisty, Milbradt

Bachelor of Science in Civil Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering Requirements</td>
<td>54</td>
</tr>
<tr>
<td>CAE 100, 101, 105, 110, 111, 221, 301, 302, 303, 304, 307, 310, 312, 315, 323, 419, 431, 432, 457, 470</td>
<td>54</td>
</tr>
<tr>
<td>CAE Electives</td>
<td>6</td>
</tr>
<tr>
<td>Technical Electives*</td>
<td>9</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td>18</td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td>11</td>
</tr>
<tr>
<td>IPRO Capstone Design Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Course Requirements</td>
<td>9</td>
</tr>
<tr>
<td>MMAE 201, 202, 305</td>
<td>9</td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td>21</td>
</tr>
</tbody>
</table>

Total Hours 137

* Of the total of three technical electives, one must be a junior-year IPRO.
Civil Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 100</td>
<td>ITP I: Introduction to Drawing</td>
<td>2</td>
<td>CAE 101</td>
</tr>
<tr>
<td>CAE 110</td>
<td>Professional Practice I</td>
<td>1</td>
<td>CAE 111</td>
</tr>
<tr>
<td>CAE 105</td>
<td>Geodetic Science</td>
<td>3</td>
<td>MATH 152</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus I</td>
<td>5</td>
<td>CS 105</td>
</tr>
<tr>
<td>CHEM 124</td>
<td>Principles of Chemistry I</td>
<td>4</td>
<td>PHYS 123</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Multivariate and Vector Calculus</td>
<td>4</td>
<td>MATH 252</td>
</tr>
<tr>
<td>MMAE 201</td>
<td>Mechanics of Solids I</td>
<td>3</td>
<td>MMAE 305</td>
</tr>
<tr>
<td>CAE 221</td>
<td>Engineering Geology</td>
<td>3</td>
<td>MMAE 302</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>General Physics II</td>
<td>4</td>
<td>PHYS 224</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 301</td>
<td>Hydraulics and Hydrology</td>
<td>3</td>
<td>CAE 302</td>
</tr>
<tr>
<td>CAE 303</td>
<td>Structural Design I</td>
<td>3</td>
<td>CAE 307</td>
</tr>
<tr>
<td>CAE 304</td>
<td>Structural Analysis I</td>
<td>3</td>
<td>CAE 310</td>
</tr>
<tr>
<td>CAE 312</td>
<td>Engineering Systems Analysis</td>
<td>3</td>
<td>CAE 323</td>
</tr>
<tr>
<td>CAE 315</td>
<td>Materials of Construction</td>
<td>3</td>
<td>CAE or Technical Elective*</td>
</tr>
<tr>
<td>CAE or Technical Elective*</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 419</td>
<td>Transport Engineering and Design</td>
<td>3</td>
<td>CAE 432</td>
</tr>
<tr>
<td>CAE 431</td>
<td>Steel Design</td>
<td>3</td>
<td>CAE or Technical Elective*</td>
</tr>
<tr>
<td>CAE 457</td>
<td>Geotechnical Foundation Design</td>
<td>3</td>
<td>CAE or Technical Elective*</td>
</tr>
<tr>
<td>CAE 470</td>
<td>Construction Methods/Cost Estimating</td>
<td>3</td>
<td>IPRO Capstone Design Course</td>
</tr>
<tr>
<td>CAE or Technical Elective*</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Total Hours</td>
<td>15</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours: **137**

* At least two courses must be CAE 400-level courses and one of the remaining technical electives must be a junior year IPRO.

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).
Civil, Architectural, and Environmental Engineering

Professional Specializations in Civil Engineering

Students who select an area of specialization must take a minimum of nine credit hours from the following technical electives listed under the respective area of specialization. Three additional credit hours may be any 400-level CAE course taken with prior approval of the student’s advisor and chair.

Structural Engineering
- CAE 408 Bridge and Structural Design
- CAE 420 Dynamics of Structures
- CAE 430 Probability Concepts in Civil Engineering
- CAE 435 Experimental Analysis of Structures
- CAE 442 Finite Elements Methods in Framed Structures

Construction Engineering and Management
- CAE 471 Construction Planning and Scheduling
- CAE 472 Construction Site Operation
- CAE 473 Construction Project Administration

Geotechnical Engineering
- CAE 415 Pavement Design, Construction, and Maintenance
- CAE 442 Finite Elements Methods in Framed Structures
- CAE 486 Soil and Site Improvement

Transportation Engineering
- CAE 412 Traffic Engineering Studies and Design
- CAE 415 Pavement Design, Construction, and Maintenance
- CAE 416 Facility Design of Transportation Systems
- CAE 417 Railroad Engineering Studies and Design
- CAE 430 Probability Concepts in Civil Engineering

Civil-Environmental Engineering
The department offers a significant specialization in environmental engineering that involves technical electives and substitutions for required courses. Those interested should consult with the department.
Architectural Engineering

Department Web site: www.iit.edu/~ce

The objective of the architectural engineering program is to educate graduates who are prepared to enter the architectural engineering profession. Also, this program will prepare students to begin graduate studies in engineering. Graduates of the program, who follow architectural engineering as their career path, are qualified to be involved in an area related to architectural engineering or pursuing a graduate or professional degree, within several years following graduation from IIT. This program provides breadth in core sub-disciplines and depth in at least one area of specialization. This degree program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

Architectural engineering is a building-oriented discipline which offers students an opportunity to obtain an engineering education specializing in building architecture, building-system integration, and structural and computer-aided design.

Professional architectural engineers are concerned with the structural integrity of buildings; the design and analysis of HVAC (Heating, Ventilating and Air Conditioning); plumbing, fire protection and electrical systems; acoustics; lighting; energy conservation; building science and the study of building performance; and the management of construction resources and schedules. Graduates of the architectural engineering program will be well prepared for careers as consulting engineers, building contractors, construction managers, structural engineers, and knowledgeable specialists in related areas of building design and analysis.

Architectural engineering shares much in common with civil and mechanical engineering but is distinct in its exclusive concentration on building projects. Architectural engineering students should have an aptitude in and an appreciation of the following areas of knowledge: basic principles of mathematics; physics and chemistry; manual and computer-aided drafting and design; surveying; construction materials; engineering mechanics; structural analysis and design; building-system integration; and professional practice and ethics.

Architecture students who plan to pursue a master’s degree in architectural engineering should take CAE 208, 209, and 383. Students should consult the IIT Bulletin: Graduate Programs for additional details.

All architectural engineering students are required to take the Fundamentals of Engineering (FE) examination during their senior year. The examination is offered by the State of Illinois in October and April. Students should contact the Department of Civil, Architectural, and Environmental Engineering for information concerning this examination.
Bachelor of Science in Architectural Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Engineering Requirements</td>
<td>59</td>
</tr>
<tr>
<td>CAE 100, 101, 105, 110, 111, 208, 209, 303, 304, 307, 312, 315, 323, 331, 334, 383, 461, 464, 468, 469, 470, 471</td>
<td></td>
</tr>
<tr>
<td>IPRO Capstone Design Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Engineering Course Requirements</td>
<td>6</td>
</tr>
<tr>
<td>MMAE 201, 202</td>
<td></td>
</tr>
<tr>
<td>Humanities Requirement</td>
<td>3</td>
</tr>
<tr>
<td>AAH 119</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>18</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>136</td>
</tr>
</tbody>
</table>

* Of the total of four technical electives, one must be a junior-year IPRO.
Architectural Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 100 ITP I: Introduction to Drawing</td>
<td>2</td>
</tr>
<tr>
<td>CAE 110 Professional Practice I</td>
<td>1</td>
</tr>
<tr>
<td>CAE 105 Geodetic Science</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 101 Introduction to the Profession II</td>
<td>2</td>
</tr>
<tr>
<td>CAE 111 Professional Practice II</td>
<td>1</td>
</tr>
<tr>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 201 Mechanics of Solids I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CAE 208 Thermo-Fluids Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>AAH 119 History of World Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 202 Mechanics of Solids II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 224 Thermal and Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>CAE 209 Thermo-Fluids Engineering II</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 315 Materials of Construction</td>
<td>3</td>
</tr>
<tr>
<td>CAE 312 Engineering Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CAE 303 Structural Design I</td>
<td>3</td>
</tr>
<tr>
<td>CAE 304 Structural Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>CAE 331 Building Science</td>
<td>3</td>
</tr>
<tr>
<td>CAE 383 Electrical and Electronic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 307 Structural Design II</td>
<td>3</td>
</tr>
<tr>
<td>CAE 323 Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CAE 334 Illumination and Acoustics</td>
<td>3</td>
</tr>
<tr>
<td>CAE 461 Plumbing and Fire Protection Design</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 (Not 315 or 335)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 470 Construction Methods/Cost Estimating</td>
<td>3</td>
</tr>
<tr>
<td>CAE 468 Architectural Design</td>
<td>2</td>
</tr>
<tr>
<td>CAE 464 HVAC Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>CAE Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>CAE Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE 471 Construction Planning and Scheduling</td>
<td>3</td>
</tr>
<tr>
<td>CAE 469 Architectural Studio</td>
<td>2</td>
</tr>
<tr>
<td>IPRO Capstone Design Course</td>
<td>3</td>
</tr>
<tr>
<td>CAE Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Total Credit Hours: 136

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).
Civil, Architectural, and Environmental Engineering

Professional Specializations in Architectural Engineering

Students who select an area of specialization must take a minimum of nine credit hours from the following technical electives listed under the respective area of specialization.

Building Mechanical and Energy
- CAE 403 Sound and Vibration Control in Buildings
- CAE 463 Building Enclosure Design
- CAE 465 Building Energy Conservation Technologies

Construction and Engineering Management
- CAE 421 Risk Assessment Engineering
- CAE 472 Construction Site Operation
- CAE 473 Construction Project Administration

Acoustics and Illumination
- CAE 403 Sound and Vibration Control in Buildings
- CAE 409 Acoustic Performance Spaces
- CAE 467 Lighting Systems Design

Electrical and Illumination
- CAE 465 Building Energy Conservation Technologies
- CAE 466 Building Electrical Systems Design
- CAE 467 Lighting Systems Design

Structural Engineering
- CAE 310 Structural Analysis II
- CAE 431 Steel Design
- CAE 432 Concrete and Foundation Design

Fire Protection and Life Safety
- CAE 422 Sprinklers, Standpipes, and Fire Pumps
- CAE 424 Introduction to Fire Dynamics
- CAE 425 Fire Protection and Life Safety

* Students should take CAE 310 in Semester 6 and an IPRO in Semester 7.

Engineering Graphics-Optional Programs

Engineering graphics is an indispensable communication and design tool which is concerned with the graphical representation of designs and specifications for physical objects and data relationships as used in engineering, science, business and technical work. The graphic language, with the symbolic and verbal languages, enables those engaged in technology to communicate effectively, making it possible for new ideas, designs and developments to be transformed into useful consumer products. The well-trained engineer, scientist, or technician must be able to make correct graphical representations of engineering structures, designs and data relationships, as well as possess an ability to express ideas quickly and accurately through the use of the graphic language.

For further information call 312.567.3365.

Certificate in Engineering Graphics and CAD Curriculum

Recognizing the need for drafters and designers with a strong background in special areas of graphics, the Department of Civil and Architectural and Environmental Engineering offers the following engineering graphics certificate program. This program is designed to prepare specialists in graphics for positions in business and industry. Students completing the specified courses with satisfactory grades will be awarded a certificate of completion.

- EG 105 Engineering Graphics and Design
- EG 305 Advanced Engineering Graphics and Design
- EG 306 Engineering Descriptive Geometry
- EG 405 Mechanical Design Graphics
- EG 406 Technical and Pictorial Illustration
- EG 419 Computer Graphics in Engineering

Professional Specialization in Engineering Graphics

The department offers a comprehensive series of special courses in engineering graphics that a student may take as electives in areas related to individual professional goals. Consult the department for advice on appropriate courses.
Engineering Management

Department Web site: www.iit.edu/~engmngt

This program is intended to offer an opportunity to students to obtain skills and competencies that are highly relevant to the rapidly growing face of business and industry - largely engendered by the accelerating development of new technologies and the emerging global economy.

The program objective is to prepare students to become leaders in the corporate world of the 21st century by emphasizing in fundamentals of science, engineering, management and business administration, and by concentrating on the development of critical thinking skills directed toward practical problem solving and informed decision making.

Students will obtain the ability to make decisions concerning technology selection and product process development in ways that combine technical, financial, marketing, human resources and strategic considerations. They will learn how to perform economic analyses for new products, technologies and processes and how to prepare business plans that include financial details, marketing strategies and design decisions based on target costs and forecasted rate of return on investment capital.

The program has several possibilities for areas of concentration. These areas can be tailored for students who have interests in environmental, manufacturing, fire safety, construction management, transportation, materials and engineering foundations.

Bachelor of Science in Engineering Management

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics Requirements</td>
<td>17</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 474 or 475 (MATH 252 is a prerequisite for some concentrations and may be used as a technical elective.)</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
<tr>
<td>Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Core Management Requirements</td>
<td>21</td>
</tr>
<tr>
<td>BUS 210, 301, 305, 371, ECON 211, 423, COM 428</td>
<td></td>
</tr>
<tr>
<td>Engineering Concentration</td>
<td>24-28</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td>9</td>
</tr>
<tr>
<td>Free Electives</td>
<td>4-10</td>
</tr>
</tbody>
</table>

Total Hours: 127
Civil, Architectural, and Environmental Engineering

Engineering Management Concentrations

The concentrations presently available include:

Engineering Foundations

Credit Hours: 28
- MS 201 Materials Science
- CHE 202 Material and Energy Balances
- MMAE 200 Introduction to Mechanics
- MMAE 430 Engineering Measurements
- MMAE 484 Materials and Process Selection
- PHYS 300 Instrumentation Laboratory
- CAE 312 Engineering Systems Analysis
- CAE 473 Construction Project Administration
- ENVE 485 Pollution Prevention

Manufacturing and Materials Engineering

Credit Hours: 24
- MS 201 Materials Science
- MMAE 201 Mechanics of Solids I
- MMAE 202 Mechanics of Solids II
- MMAE 371 Engineering Materials and Design
- MMAE 445 CAD/CAM with Numerical Control
- MMAE 485 Manufacturing Processes
- Two of the following:
 - MMAE 370 Materials Laboratory I
 - MMAE 444 Design for Manufacture
 - MMAE 468 Introduction to Ceramic Materials
 - MMAE 480 Forging and Forming
 - MMAE 483 Struc./Property Relationships in Polymers
 - MMAE 484 Materials and Process Selection

Transportation Engineering

Credit Hours: 24
- CAE 105 Geodetic Science
- CAE 301 Hydraulics and Hydrology
- CAE 312 Engineering Systems Analysis
- CAE 323 Soil Mechanics
- CAE 412 Traffic Engineering Studies and Design
- CAE 416 Facility Design of Transportation Systems
- CAE 417 Railroad Engineering and Design
- CAE 419 Transportation Engineering and Design

Environmental Engineering

Credit Hours: 25
- CHEM 125 Principles of Chemistry II
- CHEM 247 Analytical Chemistry
- CHEM 343 Physical Chemistry I
- CHE 202 Material and Energy Balances
- CHE 301 Fluid Mech. and Heat-Transfer Operations
- ENVE 404 Water and Wastewater Engineering
- ENVE 463 Introduction to Air Pollution Control
- ENVE 485 Pollution Prevention

Construction Engineering & Management

Credit Hours: 28
- CAE 105 Geodetic Science
- CAE 202 Materials and Strength of Materials
- CAE 304 Structural Analysis I
- CAE 312 Engineering Systems Analysis
- CAE 315 Materials of Construction
- CAE 470 Construction Methods and Cost Estimating
- CAE 471 Construction Planning and Scheduling
- CAE 472 Construction Site Operation
- CAE 473 Construction Project Administration
Computer Science

Department Web site: www.cs.iit.edu

Computers have changed what we do and how we do it— in our homes, in our offices, and throughout our world. The discipline of computer science focuses upon the many challenging problems encountered in the development and use of computers and computer software. Areas of study in computer science range from theoretical analyses into the nature of computing and computing algorithms, through the development of advanced computing devices and computer networks, to the design and implementation of sophisticated software systems.

The department offers two undergraduate programs in computer science: a Bachelor of Science in Computer Science and Bachelor of Science in Computer Information Systems. Both programs provide an excellent background in computer science and allow for ample study in other areas. Where these programs differ is in the approach they take to computer science. The B.S. in Computer Science provides an in-depth experience focusing on the theory and practice of computer science while the B.S. in Computer Information Systems provides a more interdisciplinary experience, balancing study in computer science with study in another field.

In addition to these programs in computer science, the university offers a Bachelor of Science in Computer Engineering. This program focuses on both the digital electronics hardware used in computer systems and the software that controls this hardware, with an emphasis on the design and implementation of computer-controlled systems. This program is described in detail on page 99.

Each graduate of the B.S. in Computer Science program should be able to:

- An ability to apply knowledge of computing and mathematics appropriate to the discipline
- An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution
- An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs
- An ability to function effectively on teams to accomplish a common goal
- An understanding of professional, ethical, legal, security, and social issues and responsibilities
- An ability to communicate effectively with a range of audiences
- An ability to analyze the local and global impact of computing on individuals, organizations, and society
- Recognition of the need for, and an ability to engage in, continuing professional development
- An ability to use current techniques, skills, and tools necessary for computing practices
- An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices
- An ability to apply design and development principles in the construction of software systems of varying complexity
- Be prepared to enter a top-ranked graduate program in Computer Science

All three programs begin with a set of introductory courses that work together to provide students with a firm foundation in computer science. These introductory courses include weekly labs in which students use state-of-the-art software development techniques (object-oriented programming in C++ or Java, for instance) to create solutions to interesting problems. The department’s unique four-phase laboratory model encourages student creativity by providing ample opportunity for constructive feedback on each student’s efforts. Having completed the introductory core, a student is prepared to work independently within a well-structured design framework— in the classroom or on the job.

The last two years of study build upon this foundation. The Bachelor of Science in Computer Science focuses on the concepts and techniques used in the design and development of advanced software systems. Students in this program explore the conceptual underpinnings of computer science—its fundamental algorithms, programming languages, operating systems, and software engineering techniques. In addition, students choose from a rich set of electives including computer graphics, artificial intelligence, database systems, computer architecture, and computer networks, among others. As with the introductory sequence, these advanced courses stress “hands-on” learning by doing. A generous allotment of free electives allows students to combine study in computer science with study in another field—either by taking a well-defined specialized minor in another discipline or by working with an advisor to formulate a program that combines experiences across disciplines.

The B.S. in Computer Information Systems program emphasizes the use of computers as sophisticated problem-solving tools. Students in this program pursue an interdisciplinary course of study that combines a solid foundation in computer science with a focus in another discipline. This program is designed for students who seek to blend their computer science abilities with skills specific to another domain to solve problems in that domain. Examples include computing with a business focus (e.g., management information systems) or computing with a natural science focus (e.g., computational physics).
Faculty

Acting Chair
Bogdan Korel
Room 236B Stuart Building
312.567.5145

Associate Chair
Cynthia Hood
Room 237E Stuart Building
312.567.3918

Director of Undergraduate Programs
Matthew Bauer
Room 237B Stuart Building
312.567.5148

Professors
Carlson, Frieder, Kapoor, Reingold, X. Sun

Associate Professors
Agam, Argamon, Calinescu, Grossman, Hood, Korel, X.Y. Li, Wan

Assistant Professors
Lan, Ren, Yee

Research Faculty
Elrad, Roberson, H. Zhang

Clinical Associate Professor
Goharian

Industry Associate Professors
Chlebus, Leung

Senior Lecturers
M. Bauer, Beckman, Sasaki, Soneru

Full-Time Instructors
Bistriceanu, Hanrath, Koutsogiannakis, Saelee, Winans

Faculty Emeriti
C. Bauer, I. Burnstein, Evens, Greene

Adjunct Faculty
Bader

Part-Time Instructors
Aldawud, Choi, Manov
Bachelor of Science in Computer Science

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science Requirements</td>
<td>33</td>
</tr>
<tr>
<td>Computer Science Electives*</td>
<td>15</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>20</td>
</tr>
<tr>
<td>MATH 151, 152, 251, (332 or 333), (474 or 475)</td>
<td></td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Chosen from MATH 252, 410, 435, 453, 454, 476, 482</td>
<td></td>
</tr>
<tr>
<td>Science Requirements</td>
<td>8</td>
</tr>
<tr>
<td>PHYS 123, 221</td>
<td></td>
</tr>
<tr>
<td>Science Electives*</td>
<td>6</td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Writing and Speaking Elective</td>
<td>3</td>
</tr>
<tr>
<td>COM 421 or COM 428</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Free Electives</td>
<td>12</td>
</tr>
</tbody>
</table>

| Total Hours | 127 |

* CS 201 is a one-semester, accelerated course equivalent to the two-semester CS 115/CS 116 sequence.
** MATH 230 is allowed as a substitute for CS 330.
*** Computer science electives: Any computer science course at the 300-level or higher (including Graduate CS courses) may be used as a computer science elective, except CS 401, CS 402, CS 403 and CS 406. ECE 218 - Digital Systems and ECE 441 - Microcomputers may also be used as computer science electives. No courses from any other programs can be used as computer science electives.
**** Science electives (no lab required): Chosen from the natural sciences (Biology, Chemistry, and Physics), or MS 201 - Materials Science, or Psychology (limited to courses marked with an N in the IIT Bulletin). At least one course must be in a field other than Physics.

The Computing Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET) accredits this program.
Computer Science Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 100 Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 116 Object-Oriented Programming II</td>
<td>2</td>
</tr>
<tr>
<td>CS 330 Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 331 Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CS 350 Computer Org/Assembly Language Prog</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 351 System Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 430 Introduction to Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>MATH 332 Matrices</td>
<td>3</td>
</tr>
<tr>
<td>MATH 333 Matrix Algebra and Complex Variables</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 430 Programming Languages/Translators</td>
<td>3</td>
</tr>
<tr>
<td>MATH 474 Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td>3</td>
</tr>
<tr>
<td>MATH 475 Probability</td>
<td></td>
</tr>
<tr>
<td>COM 421 Technical Communication</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>COM 428 Verbal and Visual Communication</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 450 Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 487 Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 485 Computers in Society</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 127
Bachelor of Science in Computer Information Systems

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science Requirements</td>
<td>18</td>
</tr>
<tr>
<td>CS 100, 115, 116, 330 (or MATH 230), 331, 350, 351</td>
<td></td>
</tr>
<tr>
<td>Computer Science Technical Electives</td>
<td>15</td>
</tr>
<tr>
<td>Computer Science Electives</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics Requirement</td>
<td>5</td>
</tr>
<tr>
<td>MATH 151</td>
<td></td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Science Requirements</td>
<td>11</td>
</tr>
<tr>
<td>BIOL 107 or 115, CHEM 124, PHYS 123</td>
<td></td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Requirement</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level course</td>
<td></td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>9</td>
</tr>
<tr>
<td>Psychology Requirements</td>
<td>6</td>
</tr>
<tr>
<td>PSYC 221, 301</td>
<td></td>
</tr>
<tr>
<td>Social Sciences Requirement</td>
<td>3</td>
</tr>
<tr>
<td>PS 200</td>
<td></td>
</tr>
<tr>
<td>Social Sciences Electives</td>
<td>6</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Minor Electives</td>
<td>15</td>
</tr>
<tr>
<td>Free Electives</td>
<td>18</td>
</tr>
<tr>
<td>Total Hours</td>
<td>127</td>
</tr>
</tbody>
</table>

* Computer science technical electives are designated with a (T) in the course descriptions.
Computer Information Systems Curriculum

Semester 1 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 100 Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>PSYC 221 Human Behavior Growth and Learning</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 2 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 116 Object-Oriented Programming II</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 115 Human Biology</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 107 General Biology</td>
<td></td>
</tr>
<tr>
<td>Mathematics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Semester 3 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 330 Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>CS 331 Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>PS 200 American Government</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 4 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 350 Computer Org/Assembly Language Prog</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 5 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 351 Systems Programming</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 6 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 301 Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 7 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 8 Credits
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 127

* Computer science technical electives are designated with a (T) in the course descriptions.
Specializations in Computer Science

Students in either the CS or CIS program may elect to complete one or both of these specializations by choosing their Computer Science Electives and Free Electives appropriately, or by taking extra classes. The student must receive department approval and notify Educational Services. A minimum of 4 courses are required for a specialization.

Information Security

CS 425 Database Organization
CS 458 Information Security
CS 455 Data Communications
CS 549 Cryptography and Network Security

Information and Knowledge Management Systems

Students must take the following courses:

CS 425 Database Organization
CS 482 Information & Knowledge Management Systems

In addition, they should choose at least two courses from the following:

CS 422 Introduction to Data Mining
CS 429 Introduction to Information Retrieval Systems
CS 481 Artificial Intelligence: Language Understanding
Electrical and Computer Engineering

Department Web site: www.ece.iit.edu

The Department of Electrical and Computer Engineering offers the Bachelor of Science in Electrical Engineering (B.S.E.E.). The department also offers a Bachelor of Science in Computer Engineering (B.S.CP.E.). Both degree programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

The department allows these minors (for more details, see pages 156–158):

- Air Force Aerospace Studies
- Applied Mathematics
- Applied Solid State Physics
- Energy/Environment/Economics (E3)
- Management
- Military Science
- Naval Science
- Premedical Studies for electrical engineering
- Telecommunications

The B.S.E.E. curriculum provides a strong foundation in mathematics, physics, chemistry, and computer science during the first two years of study. The fundamentals of circuits, electronics, digital and computer systems, electrodynamics, linear systems, and energy conversion are introduced in the second and third years. In the senior year, students further explore their specific areas of interest and gain in-depth exposure to engineering design through the choice of electives.

The B.S.CP.E. curriculum concentrates on the design and application of computer hardware and software systems. During the first three years, the curriculum provides students with a strong foundation in mathematics, physics, chemistry, and computer science, followed by the fundamentals of electrical engineering and computer science that form the basis of computer engineering. During the senior year, advanced courses provide students with depth in selected areas and exposure to the practice of engineering design. Elective courses provide the flexibility to take specialized courses in a number of different areas.

Students with strong interests in both electrical engineering and computer engineering can elect to earn a dual degree, B.S.E.E./B.S.CP.E.

Faculty

Chair
Mohammad Shahidehpour
Room 103 Siegel Hall
312.567.5737

EE and CPE Program Director
Jafar Saniie
Room 103 Siegel Hall
312.567.3412

Professors
Emadi, Saniie, Shahidehpour, Wernick, Williamson, Wong, Yang

Adjunct Professors
Briley, Kavicky, Nagel, Pinnello, Wiedman

Associate Professors
Atkin, Flueck

Assistant Professors
Anjali, Brankov, Cheng, Choi, Khaligh, Krishnamurthy, Z. Li, Oruklu, K. Ren, J. Wang, Xu, Yetik, Zhou

Senior Lecturers
Borkar, Shanehchi

Lecturer
J. Kim

Faculty Emeriti
Armington, Arzbaecher, Martin, Saletta, Stark, Weber
Electrical and Computer Engineering

Electrical Engineering
Department Web site: www.ece.iit.edu

Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design and production of electric power, radio, radar, television, computing, telecommunication, control and information systems. These engineers find solutions to the challenging technical problems that arise in our rapidly changing society. They impact virtually every aspect of daily life, as evidenced by examples such as wireless communications, audio and video equipment, power distribution, computerized traffic control, noise pollution monitoring and abatement, and medical instrumentation.

The electrical engineering curriculum puts emphasis on both theory and practical applications by providing a solid background in engineering science and mathematics, followed by a sequence of core courses in electrical engineering. Design skills are fostered in the professional elective courses in the senior year, along with the project experience instilled by Interprofessional Projects (IPROs).

The objectives of the ECE undergraduate electrical engineering program are to produce electrical engineering graduates who are prepared to:

- Enter their profession and make intellectual contributions to it
- Embark on a lifelong career of personal and professional growth
- Take advanced courses at the graduate level

Bachelor of Science in Electrical Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Requirements</td>
<td>36</td>
</tr>
<tr>
<td>ECE 100, 211, 212, 213, 214, 218, 242, 307, 308, 311, 312, 319</td>
<td></td>
</tr>
<tr>
<td>Professional ECE Electives</td>
<td>17</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>24</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252, 333, 474</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122</td>
<td></td>
</tr>
<tr>
<td>Engineering Science Course Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 200 or MMAE 320</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirements</td>
<td>4</td>
</tr>
<tr>
<td>CS 115, 116</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 107, MS 201, or CHEM 126</td>
<td></td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>131</td>
</tr>
</tbody>
</table>
Electrical Engineering Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 100 Introduction to the Profession</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 122 Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
</tr>
<tr>
<td>Humanities 100-level Course</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CS 116 Object-Oriented Programming II</td>
<td>2</td>
</tr>
<tr>
<td>Science Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>ECE 211 Circuit Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 212 Analog and Digital Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ECE 218 Digital Systems</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 224 General Physics III Lecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 213 Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 214 Analog and Digital Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>ECE 242 Digital Computers and Computing</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 333 Matrix Algebra and Complex Variables</td>
<td>3</td>
</tr>
<tr>
<td>ECE 307 Electrodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ECE 311 Engineering Electronics</td>
<td>4</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I**</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 308 Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 312 Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>ECE 319 Fundamentals of Power Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 474 Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II**</td>
<td>3</td>
</tr>
<tr>
<td>Professional ECE Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Professional ECE Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Professional ECE Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional ECE Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Professional ECE Elective†</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Science Elective***</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective†</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours

131

* Science elective must be BIOL 107, CHEM 126, or MS 201.

** Interprofessional projects may be taken at any time during the sophomore, junior or senior years. (Course scheduling must be adjusted accordingly with advisor approval.) IPROs are subject to the approval of a student’s academic advisor. At least one IPRO should have significant (at least 75 percent) technical content and be viewed as a technical IPRO with the same definition as a technical elective.

*** Engineering science elective: Choose either MMAE 200 or MMAE 320.

† Professional ECE electives may be chosen from any of the 400-level ECE courses identified with (P) in the course descriptions. Courses at the 500-level may be taken with the written consent of the instructor, faculty advisor and the ECE department chair. At least two of the electives must contain laboratories. A maximum of three credits of Undergraduate Research (ECE 491) or Special Problems (ECE 497) may be used as professional ECE electives with advisor approval.

†† Advisor-approved course from engineering, science, mathematics, or computer science that is more advanced than the academic level of the student.

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).
Computer Engineering

Department Web site: www.ece.iit.edu

Computer engineering involves the design and application of computer hardware and computer software. Computer hardware consists of the physical components that implement a computer system: processor and memory chips, circuit boards, and peripheral devices. Computer software consists of computer programs that accomplish a specific task using sequences of simple, programmable steps. Computers have become an integral part of many large systems that require sophisticated control, including automobiles, medical instrumentation, telecommunication systems, and factory automation. Computers are a driving force behind many of today’s exciting new technologies, including wireless communications, interactive multimedia, and high-speed computer networks.

Computer engineers must have detailed knowledge of both hardware and software to design, build and use complex information processing systems for a wide range of applications.

The objectives of the ECE undergraduate computer engineering program are to produce electrical engineering graduates who are prepared to:

- Enter their profession and make intellectual contributions to it
- Embark on a lifelong career of personal and professional growth
- Take advanced courses at the graduate level

Bachelor of Science in Computer Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE Major Requirements</td>
<td>28</td>
</tr>
<tr>
<td>ECE 100, 211, 212, 213, 214, 218, 242, 311, 441, 485</td>
<td></td>
</tr>
<tr>
<td>Computer Science Major Requirements</td>
<td>19</td>
</tr>
<tr>
<td>CS 115, 116, 330, 331, 351, 450, 487</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>24</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252, 474, Junior mathematics elective (MATH 333 or 350)</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122</td>
<td></td>
</tr>
<tr>
<td>Engineering Course Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 200 or MMAE 320</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Junior Computer Engineering Elective</td>
<td>3/4</td>
</tr>
<tr>
<td>ECE 307, 308, 312, or 319</td>
<td></td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 107, MS 201, or CHEM 126</td>
<td></td>
</tr>
<tr>
<td>Professional Electives</td>
<td>9/12</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Hours 130/134
Electrical and Computer Engineering

Computer Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 100 Interprofessional Project</td>
<td>3</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 122 Principles of Chemistry I</td>
<td>3</td>
<td>CS 116 Object-Oriented Programming II</td>
<td>2</td>
</tr>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Course</td>
<td>3</td>
<td>Science Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>PHYS 224 General Physics III Lecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211 Circuit Analysis I</td>
<td>3</td>
<td>ECE 213 Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 212 Analog and Digital Laboratory I</td>
<td>1</td>
<td>ECE 214 Analog and Digital Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>ECE 218 Digital Systems</td>
<td>3</td>
<td>ECE 242 Digital Computers and Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 331 Data Structures and Algorithms</td>
<td>3</td>
<td>CS 330 Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 311 Engineering Electronics</td>
<td>4</td>
<td>CS 450 Operating Systems I</td>
<td>3</td>
</tr>
<tr>
<td>CS 351 Systems Programming</td>
<td>3</td>
<td>MATH 474 Probability and Statistics†</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Science Elective**</td>
<td>3</td>
<td>IPRO 497 Interprofessional Project I†</td>
<td>3</td>
</tr>
<tr>
<td>Junior Mathematics Elective***</td>
<td>3</td>
<td>Junior CPE Elective****</td>
<td>3/4</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>15/16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 441 Microcomputers</td>
<td>4</td>
<td>IPRO 497 Interprofessional Project II††</td>
<td>3</td>
</tr>
<tr>
<td>ECE 485 Computer Organization and Design*****</td>
<td>3</td>
<td>Professional ECE Elective†††</td>
<td>3/4</td>
</tr>
<tr>
<td>CS 487 Software Engineering I</td>
<td>3</td>
<td>Hardware-desing Elective†††</td>
<td>3/4</td>
</tr>
<tr>
<td>Professional ECE Elective††</td>
<td>3/4</td>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16/17</td>
<td>Total Hours</td>
<td>15/17</td>
</tr>
</tbody>
</table>

Total Credit Hours \[130/134\]

* Science elective must be BIOL 107, CHEM 126, or MS 201.

** Engineering science elective: Choose either MMAE 200 or MMAE 320.

*** Junior mathematics elective: Choose either MATH 333 or MATH 350.

**** Junior CPE elective: Choose one of ECE 307, 308, 312, or 319.

***** CS 470 may be substituted with advisor approval.

† ECE 475 may be substituted with advisor approval.

†† Interprofessional projects may be taken at any time during the sophomore, junior or senior years. (Course scheduling must be adjusted accordingly with advisor approval.)

††† Professional electives may be chosen from the 400-level ECE courses identified with a (P) in the course descriptions except ECE 448, and any 400-level computer science courses except CS 485. A maximum of three credits of Undergraduate Research (ECE 491) or Special Problems (ECE 497) may be used as a professional elective with advisor approval.

†††† Hardware-design elective must be ECE 429 or ECE 446.

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).
Bachelor of Science in Electrical Engineering/
Bachelor of Science in Computer Engineering

The dual degree, B.S.E.E./B.S.CP.E., combines all the essential elements of a broad-based, traditional B.S.E.E. Degree with the modern and progressive aspects of a B.S.CP.E. Degree. This program contributes to the foundation of the new millennium, where computer hardware and software are used in areas such as telecommunications, power electronics, digital signal processing, computer networks, and control systems. Freshmen entering IIT with a significant number of advanced placement credits may be able to complete both degrees in four years.

Bachelor of Science in Electrical Engineering/
Bachelor of Science in Computer Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Requirements</td>
<td>47</td>
</tr>
<tr>
<td>ECE 100, 211, 212, 213, 214, 218, 242, 307, 308, 311, 312, 319, 429 (or 446), 441, 485</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering Requirements</td>
<td>19</td>
</tr>
<tr>
<td>CS 115, 116, 330, 331, 351, 450, 487</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>24</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252, 333, 474</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 122</td>
<td></td>
</tr>
<tr>
<td>Engineering Science Course Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 200 or MMAE 320</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 107, MS 201, or CHEM 126</td>
<td></td>
</tr>
<tr>
<td>Professional ECE Electives</td>
<td>9/10</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>146/147</td>
</tr>
</tbody>
</table>
Electrical and Computer Engineering

B.S.E.E./B.S.C.P.E. Engineering

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 100 Introduction to the Profession</td>
<td>3</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 122 Principles of Chemistry I</td>
<td>3</td>
<td>CS 116 Object-Oriented Programming II</td>
<td>2</td>
</tr>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
<td>Science Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Course</td>
<td>3</td>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>PHYS 224 General Physics III Lecture</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211 Circuit Analysis I</td>
<td>3</td>
<td>ECE 213 Circuit Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ECE 212 Analog and Digital Laboratory I</td>
<td>1</td>
<td>ECE 214 Analog and Digital Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>ECE 218 Digital Systems</td>
<td>3</td>
<td>ECE 242 Digital Computers and Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 301 Data Structures and Algorithms</td>
<td>3</td>
<td>CS 330 Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 333 Matrix Algebra and Complex Variables</td>
<td>3</td>
<td>ECE 308 Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECE 307 Electrodynamics</td>
<td>4</td>
<td>ECE 312 Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>ECE 311 Engineering Electronics</td>
<td>4</td>
<td>ECE 319 Fundamentals of Power Engineering</td>
<td>4</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
<td>Engineering Science Elective**</td>
<td>3</td>
</tr>
<tr>
<td>CS 351 Systems Programming</td>
<td>3</td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 441 Microcomputers</td>
<td>4</td>
<td>ECE 429 Introduction to VLSI Design</td>
<td></td>
</tr>
<tr>
<td>CS 450 Operating Systems</td>
<td>3</td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>MATH 474 Probability and Statistics***</td>
<td>3</td>
<td>ECE 446 Advanced Logic Design</td>
<td></td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
<td>ECE 485 Computer Organization and Design****</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
<td>CS 487 Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Professional ECE Elective†</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 9</th>
<th>Credits</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional ECE Elective†</td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional ECE Elective†</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>12/13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 146/147

* Science elective must be BIOL 107, CHEM 126, or MS 201.

** Engineering science elective: Choose either MMAE 200 or MMAE 320.

*** ECE 475 may be substituted with advisor approval.

**** CS 470 may be substituted with advisor approval.

† ECE 400-level course with (P) designation and except for ECE 448. A maximum of three credits of either ECE 491 or ECE 497.
Lewis Department of Humanities

Department Web site: www.iit.edu/csl/hum

The Lewis Department of Humanities offers Bachelor of Science degrees in Humanities (HUM), Journalism of Technology, Science & Business (JTSB), and Professional and Technical Communication (PTC). The HUM degree is a flexible liberal arts degree with an emphasis on the humanistic study of technology. The JTSB degree is a science/mathematics/business-intensive program which also features a strong journalism/writing component. The PTC degree provides students with both a liberal arts education in communication and culture and an applied professional education in a technical communication field. The department offers courses in art and architectural history, communication, English as a second language, history, languages and linguistics, literature, and philosophy.

The Humanities department also offers academic minors in communication, English language and literature, history, linguistics, literature, logic and philosophy of science, philosophy, professional and technical communication, and Web communication. Minors in law and society, technology and human affairs, and urban studies are also offered in conjunction with the Department of Social Sciences.

The department has these five undergraduate educational objectives:

- To offer and support the B.S. degree programs and the academic minors.
- To provide students the opportunity to pursue personal interests in the humanities. This objective is achieved through offering a wide range of advanced courses in the many disciplines that comprise the humanities. The department also encourages students to take minors in literature, history and philosophy.
- To strengthen the ability of all IIT students to formulate and to express ideas. In addition to composition courses for both native and non-native English speakers, the department supports the Writing Center, where students receive one-on-one tutoring at their convenience. Undergraduates who qualify may also take advanced courses in writing. Advanced courses provide further exposure to critical thinking and to the communication of ideas.
- To support the requirements of all of IIT’s professional degree programs. Courses marked with (H) satisfy degree requirements in general education. The department also offers specialized courses (such as architectural history) that meet the educational needs of specific degree programs. The department offers many courses of special relevance to students preparing for careers in the law in IIT’s pre-professional degree programs.
- To enable all IIT students to enrich their professional and personal lives. This goal is achieved through advanced elective courses in the humanities, which provide an appreciation and understanding of human development and the moral foundations of human experience, particularly as reflected in history, literature and philosophy.

IIT students are encouraged to broaden their educational backgrounds and to discover new interests through the study of humanities.

The Humanities department considers the advising of students an important obligation. Each semester, all students majoring in HUM, JTSB, or PTC must meet with their faculty advisors during the advising period. Students must closely adhere to course prerequisites to maximize academic performance and satisfy requirements of the degree programs.
Humanities

Faculty

Chair
Kathryn Riley
Room 218 Siegel Hall
riley@iit.edu

Associate Chair, ESL Director, and
Undergraduate Advisor
Greg Pulliam
Room 213 Siegel Hall
pulliam@iit.edu

Professors
M. Davis, Feinberg, Harrington, Ladenson, Riley, Schmaus

Associate Professors
Broadhead, Power, Snapper

Assistant Professors
Bauer, Iverson, Stolley

Senior Lecturers
Dabbert, Pulliam

Instructor
Glassman

Faculty Emeriti
Applebaum, Irving, Zesmer
Bachelor of Science in Humanities

IIT’s B.S. in Humanities is a flexible degree program aimed at students who are interested in the study of history, philosophy, and communication from a technological point of view, and in the study of science and technology from a humanistic point of view. This degree prepares students for graduate studies in the humanities and social sciences and for professional programs in law and medicine.

Within this major, students can choose concentrations in literature, linguistics, philosophy, history, and communication. Students who choose philosophy, for example, would take all major electives and independent study courses in philosophy and add these to the two required philosophy courses, for a total of 30 hours in philosophy.

This degree has three components:

- General Education (47 hours)
- Major Coursework (33 hours)
- Minor*/Second Major/Free Electives (46 hours)

Bachelor of Science in Humanities

1. **General Education (47 hours)**
 Where unspecified, follow the bulletin guidelines.
 - Basic Writing Proficiency
 - Mathematics (5 hrs)
 - Computer Science (2 hrs)
 - Humanities and Social or Behavioral Sciences (21 hrs)
 - Natural Science or Engineering (11 hrs)
 - Interprofessional Projects (6 hrs)
 - ITP: Introduction to the Profession (2 hrs)

2. **The Major (33 hours)**
 Eleven courses in art and architectural history, communication, history, literature, philosophy, or courses offered by other departments that are approved by the student’s HUM major advisor. At least eight of these courses should be at or above the 300 level.

 Students wishing to specialize should take at least eight courses (24 hours) in a particular discipline.

 Students planning to go on to graduate study in the humanities are encouraged to take at least one independent study course.

 For single majors, all major coursework is over and above general education humanities requirements, and must be chosen in consultation with the student’s academic advisor.

 For multiple majors, up to two courses may in some cases be double-counted as applying to both humanities general education and the humanities major.

3. **Minor*/2nd Major/Free Electives (46 hours)**

 Total Hours: 126

* Students accepted into the Honors Pre-Law Program forego the minor and most free electives and take all other coursework in the first three years.
Humanities

Sample Curriculum for Honors Law Program Students

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>BIOL 107 General Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 109 General Biology Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>PS 101 Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 115 Human Biology</td>
<td>3</td>
</tr>
<tr>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 211 Basic Physics I</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses at Chicago-Kent College of Law</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses at Chicago-Kent College of Law</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Total Credit Hours: 126
Bachelor of Science in Professional and Technical Communication (PTC)

Web site: www.iit.edu/csl/hum

The Professional and Technical Communication program helps students develop their writing skills, sensitivity to the social and cultural aspects of communication, fluency with the latest computer technologies, and strategies for information design. Students in this major will therefore take a number of courses in IIT’s computer classrooms with state-of-the-art hardware and software. The required ethics component focuses on moral issues in communication, business, engineering or computer science. Finally, elective coursework in science, technology and society (STS) gives students awareness of the power of language and image to shape thoughts, values, and actions in a variety of public, private, and professional contexts.

The Internet Communication specialization brings together coursework in technical writing, communication, web design, ethics, science and technology in society, along with a minor in computer networking, to train Internet professionals.

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Requirements</td>
<td>12</td>
</tr>
<tr>
<td>COM 421 (or 423), 424, 425, 428</td>
<td></td>
</tr>
<tr>
<td>One of the following three 9-credit sequences:</td>
<td>9</td>
</tr>
<tr>
<td>WebCom Sequence</td>
<td></td>
</tr>
<tr>
<td>430, 431, 432</td>
<td></td>
</tr>
<tr>
<td>(Sequence required for iCOM specialization)</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics Sequence</td>
<td></td>
</tr>
<tr>
<td>EG 225, 325, 425</td>
<td></td>
</tr>
<tr>
<td>Architectural CAD Sequence</td>
<td></td>
</tr>
<tr>
<td>ARCH 125 and two CAD Elects*</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105 (CS 201 or (CS 115 and 116) required for iCOM specialization)</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>Natural Science and Engineering Requirements</td>
<td>11</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>5</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>MATH 151 required for iCOM specialization</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>PTC (technical) Electives</td>
<td>9</td>
</tr>
<tr>
<td>AAH or ARCH Elective</td>
<td>3</td>
</tr>
<tr>
<td>AAH 119, AAH 120, AAH 301, or ARCH 331</td>
<td></td>
</tr>
<tr>
<td>Science, Technology, and Society Electives</td>
<td>12</td>
</tr>
<tr>
<td>Minor Electives</td>
<td>15</td>
</tr>
<tr>
<td>CS Networking minor required for iCOM specialization</td>
<td></td>
</tr>
<tr>
<td>Linguistics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Ethics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td>15</td>
</tr>
<tr>
<td>Total Hours</td>
<td>128</td>
</tr>
</tbody>
</table>

* Chosen in consultation with advisor.
Humanities

PTC Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the Profession</td>
<td>2</td>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>Natural Science or Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Natural Science or Engineering Elective</td>
<td>4</td>
<td>Linguistics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC (technical) Elective</td>
<td>3</td>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Natural Science or Engineering Elective</td>
<td>3</td>
<td>PTC (technical) Elective</td>
<td>3</td>
</tr>
<tr>
<td>AAH or ARCH Elective*</td>
<td>3</td>
<td>STS Elective**</td>
<td>3</td>
</tr>
<tr>
<td>Ethics Elective**</td>
<td>3</td>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td>Total Hours</td>
<td>15</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 421 Technical Writing</td>
<td>3</td>
<td>COM 424 Document Design</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>COM 431 Intermediate Web Design/Site Mngmnt</td>
<td></td>
</tr>
<tr>
<td>COM 423 Writing Workplace</td>
<td>3</td>
<td>EG 325 Adv Eng Graphics for Non-Engineers</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>CAD Elective**</td>
<td></td>
</tr>
<tr>
<td>COM 430 Intro to Web Design/Site Management</td>
<td>3</td>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>EG 225 Engineering Graphics</td>
<td>3</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>Total Hours</td>
<td>15</td>
</tr>
<tr>
<td>ARCH 125 Introduction to Architectural Computing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STS Elective**</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 432 Advanced Web Design/Site Management</td>
<td>3</td>
<td>COM 428 Verbal and Visual Communication</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>EG 425 Computer Graphics for Non-Engineers</td>
<td>3</td>
<td>PTC (technical) Elective</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>STS Elective**</td>
<td>3</td>
</tr>
<tr>
<td>CAD Elective**</td>
<td>3</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>COM 425 Editing</td>
<td>3</td>
<td>Total Hours</td>
<td>15</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STS Elective**</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours 128

* Choose from AAH 119, AAH 120, AAH 301, ARCH 331.

** Chosen in consultation with advisor.
Bachelor of Science in Journalism of Technology, Science and Business (JTSB)

Journalism is possibly the most important occupation in a free and democratic society and the demand for journalists is increasing as news outlets proliferate. Today, in addition to newspapers and magazines, there is news on radio, television, cable, satellite TV and radio, web sites, and even cell phones and iPods. As the number and types of news outlets increase, many are also specializing in science, technology, and business. The JTSB degree program meets this specialized demand by incorporating IIT’s considerable resources in the sciences, business, engineering, and other technological areas with the Humanities department’s strengths in communication and STS (science and technology in society). This is a rigorous curriculum: our students go above and beyond the minimum general education requirements in mathematics, the sciences and engineering, computer science, business, communication and humanities courses. By educating strong writers who have a clear understanding of science, technology, and business, and the way such disciplines relate to society, the JTSB program gives its graduates a competitive edge in the workplace.

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journalism Requirements</td>
<td>21</td>
</tr>
<tr>
<td>COM 372, 373, 377, 421, 425, 435, 440</td>
<td></td>
</tr>
<tr>
<td>Journalism Electives and Supervised Field Projects</td>
<td>8</td>
</tr>
<tr>
<td>Technology, Science, and Business Electives*</td>
<td>15-16</td>
</tr>
<tr>
<td>Science, Technology, and Society Electives</td>
<td>6</td>
</tr>
<tr>
<td>Business Requirements</td>
<td>9</td>
</tr>
<tr>
<td>BUS 205, 210, ECON 211</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>10</td>
</tr>
<tr>
<td>MATH 151, 152</td>
<td></td>
</tr>
<tr>
<td>Science Requirements</td>
<td>11</td>
</tr>
<tr>
<td>BIOL 107, CHEM 124, PHYS 123</td>
<td></td>
</tr>
<tr>
<td>Science Elective*</td>
<td>3-4</td>
</tr>
<tr>
<td>BIOL 115, CHEM 125, 126, or PHYS 221</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Science Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Computer Science Requirements</td>
<td>7</td>
</tr>
<tr>
<td>CS 115, 116, 331</td>
<td></td>
</tr>
<tr>
<td>Free Electives</td>
<td>9</td>
</tr>
<tr>
<td>Total Hours</td>
<td>129</td>
</tr>
</tbody>
</table>

* Students who complete a 3 credit hour science elective must complete 16 credit hours of Science, Technology, and Business Electives.
Humanities

Journalism of Technology, Science and Business Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 107 General Biology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>CS 115 Object-Oriented Programming I</td>
<td>2</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ECON 211 Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>COM 372 Mass Media and Society</td>
<td>3</td>
</tr>
<tr>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>CS 116 Object-Oriented Programming II</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>COM 377 Communication Law and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>BUS 205 Business Basics</td>
<td>3</td>
</tr>
<tr>
<td>CS 331 Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 115 Human Biology*</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>CHEM 125 Principles of Chemistry II</td>
<td>3/4/4</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>COM 440 Introduction to Journalism</td>
<td>3</td>
</tr>
<tr>
<td>STS Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15/16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 373 Writing about Science, Tech, and Bus</td>
<td>3</td>
</tr>
<tr>
<td>BUS 211 Fin Accounting and External Reporting</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>TSB Elective</td>
<td>3</td>
</tr>
<tr>
<td>Supervised Field Project</td>
<td>1</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 435 Intercultural Communication</td>
<td>3</td>
</tr>
<tr>
<td>TSB Elective</td>
<td>3</td>
</tr>
<tr>
<td>TSB Elective</td>
<td>3</td>
</tr>
<tr>
<td>Journalism Elective</td>
<td>3</td>
</tr>
<tr>
<td>Supervised Field Project</td>
<td>1</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 421 Technical Communication</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>TSB Elective</td>
<td>3</td>
</tr>
<tr>
<td>STS Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 425 Editing</td>
<td>3</td>
</tr>
<tr>
<td>TSB Elective*</td>
<td>3/4</td>
</tr>
<tr>
<td>Journalism Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15/16</td>
</tr>
</tbody>
</table>

Total Credit Hours 129

* Students who complete a 3 credit hour science elective must complete 16 credit hours of Science, Technology, and Business Electives.
The objective of the Bachelor of Industrial Technology and Management (BINTM) program is to prepare skilled adults for managerial positions in industry. This is a completion program designed for working individuals who have technical training in manufacturing or industrial specialties. The program enables students to build upon existing skills, improve their technical capabilities, and thereby expand their career opportunities.

To accommodate full-time work schedules, courses are offered evenings and Saturdays at IIT’s Main Campus in Chicago, IIT’s Rice Campus in Wheaton, Illinois, and via the Internet for students who are unable to attend live classes.

The program offers three professional specializations: Manufacturing Technology (MT), Industrial Facilities (IF), and Industrial Logistics (IL). In Chicagoland, approximately 30% of the workforce is employed in industry. Students in this program learn principles applicable to all of these sectors while taking courses in the area of greatest interest to them.

The ideal candidate for this program is a person who is already working within or has strong interest in these industries. This degree provides a broad background that gives students the flexibility to advance within a chosen technical specialty or to move into a related career at a professional or management level.

Admission to the program is based on a review of college transcripts plus consideration of work experience and career goals. Candidates must complete an application for admission and submit official transcripts from all colleges attended, one letter of recommendation, and a personal statement. Nominally, a minimum of 60 semester hours from an accredited college is required for admission (only courses graded “C” or better are accepted for transfer). Those who have accrued at least 45 hours towards admission requirements may be admitted with the condition that all outstanding requirements be completed within two years of starting the program. Candidates who have accrued more than 60 hours of transferable credit may qualify to have excess credit applied towards INTM coursework.

A three-course INTM certificate program is available for individuals interested in improving management and decision-making skills. The courses are part of the regular curriculum and can be applied toward the BINTM degree.

Faculty and Staff

Program Director
Keith E. McKee
312.567.3650

Associate Director
Mazin Safar
312.567.3624

Outreach Coordinator
Jerry Field
312.567.3651

Program Coordinator
Pamela Houser
312.567.3584

Assistant Program Coordinator
Cynthia Spoor
312.567.3652

Industry Associate Professors
Maurer, Safar

Adjunct Professors
Arditi, Ayman, Caltagirone, Coates, Donahue, Feldy, Field, Foley, Footlik, Gibson, Goldberg, Goldman, Gopal, Hoffman, Jain, Kuniega, Lemming, Levine, McKee, Nemeth, Prendergast, Rozansky, Shankar, Shields, Sud, Tijunelis, Tomal, Twombly, Vohra
Industrial Technology and Management

Admissions Requirements

Candidates must complete an application for undergraduate admission and submit official transcripts from all colleges attended, one letter of recommendation, and a personal statement. The BINTM program nominally requires the transfer of 60 semester hours as outlined below:

Mathematics
Six credit hours at the level of college algebra or above.

Computer Science
Three credit hours of computer programming.

Natural Science
Eleven credit hours of science or engineering courses. Relevant courses include physics, chemistry or biology (physics highly recommended). Up to six credit hours may be in graphics/drafting. In some cases, certain technology courses might be applied to this requirement.

Humanities and Social Sciences
Nine credit hours. Humanities courses include literature, philosophy (except logic) and history. Social sciences typically include anthropology, geography, political science, psychology, sociology and economics. A minimum of three credit hours in each category is required.

Technical coursework
Thirty-one credit hours. (Candidates with adequate college credit but lacking the technical coursework may qualify for admission if they have two or more years of relevant industrial experience).

Industrial Technology and Management Curriculum

A total of 126 semester hours are required for the bachelor’s degree, consisting of 66 credit hours (22 courses) of junior and senior level courses completed at IIT and the 60 transfer credit hours required for admission.

The core curriculum (14 courses) emphasizes proficiency in the essential functions of industrial enterprises with a focus on management-related topics. This coursework includes upper-level humanities and social science electives and an Interprofessional Project. Students also complete four (4) technical electives and four (4) specialization electives, which provide in-depth coverage of specific aspects of industrial organizations and their related sectors.

Bachelor of Industrial Technology and Management

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Requirements</td>
<td>60</td>
</tr>
<tr>
<td>Industrial Technology Requirements</td>
<td>27</td>
</tr>
<tr>
<td>INTM 301, 305, 311, 315, 323, 404, 408, 409, 432</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td>12</td>
</tr>
<tr>
<td>Specialization Electives</td>
<td>12</td>
</tr>
<tr>
<td>Humanities Electives 300/400 level courses</td>
<td>6</td>
</tr>
<tr>
<td>Social Sciences Electives 300/400 level courses</td>
<td>6</td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>126</td>
</tr>
</tbody>
</table>
Industrial Technology and Management

A suggested program based on half-time attendance. Students may complete coursework at their own pace.

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTM 301 Communications for the Workplace</td>
<td>3</td>
<td>INTM 315 Industrial Enterprises</td>
<td>3</td>
</tr>
<tr>
<td>INTM 305 Advances in Information Technology</td>
<td>3</td>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>INTM 311 Production and Operations</td>
<td>3</td>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
<td>Total Hours</td>
<td>9</td>
</tr>
<tr>
<td>Semester 3</td>
<td></td>
<td>Semester 4</td>
<td></td>
</tr>
<tr>
<td>INTM 323 Industrial Management and Planning</td>
<td>3</td>
<td>INTM 404 Sales, Marketing and Product Intro</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>3</td>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>6</td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Semester 5</td>
<td></td>
<td>Semester 6</td>
<td></td>
</tr>
<tr>
<td>INTM 408 Cost Management</td>
<td>3</td>
<td>INTM 432 Vendor/Customer Relations</td>
<td>3</td>
</tr>
<tr>
<td>Specialization Elective</td>
<td>3</td>
<td>Specialization Elective</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>3</td>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
<td>Total Hours</td>
<td>9</td>
</tr>
<tr>
<td>Semester 7</td>
<td></td>
<td>Semester 8</td>
<td></td>
</tr>
<tr>
<td>INTM 409 Inventory Control</td>
<td>3</td>
<td>Interprofessional Project</td>
<td>3</td>
</tr>
<tr>
<td>Specialization Elective</td>
<td>3</td>
<td>Specialization Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
<td>Total Hours</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credit Hours 66

Technical Electives:

INTM 314 Maintenance Technology and Management
INTM 319 Electronics in Industry
INTM 322 Industrial Project Management
INTM 332 Systems Safety
INTM 340 Industrial Logistics
INTM 414 Topics in Industry
INTM 418 Industrial Risk Management
INTM 425 Human Resource Management
INTM 427 E-Commerce
INTM 430 Transportation
INTM 460 The Carbon Economy
INTM 461 Energy Options for Industry
INTM 477 Entrepreneurship in Industry
Specializations in Industrial Technology and Management

Industrial Facilities (IF)
- INTM 407 Construction Technology
- INTM 413 Facilities and Construction Management
- INTM 415 Advanced Project Management
- INTM 417 Construction Estimating

Manufacturing Technology (MT)
- INTM 406 Quality Control in Manufacturing
- INTM 412 Manufacturing Processes
- INTM 422 Mechanical Technology
- INTM 424 Manufacturing Information Systems

Industrial Logistics (IL)
- INTM 441 Supply Chain Management
- INTM 442 Warehousing and Distribution
- INTM 443 Purchasing
- INTM 444 Export/Import Management

Certificate in Industrial Technology and Management

The three-course INTM certificate provides an introduction to industrial organizations and how they operate.

Students must complete the following courses:
- INTM 311 Production and Operations
- INTM 315 Industrial Enterprises
- INTM 323 Industrial Management and Planning
Information Technology and Management

Center for Professional Development

Department Web site: www.iit.edu/cpd/itm

Designed for students who have achieved an Associate's Degree and would like to complete a Bachelor’s Degree, the objective of the Bachelor of Information Technology and Management program is to produce graduates prepared for a career in the information technology field, while equipping them with the critical thinking skills necessary to cope with the emergence of new technologies and with management principles needed to advance in their careers.

Government studies such as Free and Aspray, *The Supply of Information Technology Workers in the United States*, show that technology positions will be the fastest growing segment in the United States for the next thirty years. The purpose of the Bachelor of Information Technology and Management program is to provide students with up-to-date knowledge of the technologies that are being used in today’s work place. Courses are taught by professionals who work in the field and are in tune with changing information technologies.

Admission to the degree program is competitive. Admission is based on a review of college transcripts, documentation of work experience, and an admission interview. Applicants must submit an application for admission as a degree-seeking student. The applicant must hold an Associate’s Degree (A.A.) from an accredited college or the equivalent (completion of 60 credit hours). Only courses in which the student has earned a grade of “C” or better may be accepted for transfer. Supporting documentation to be included with the application includes official transcripts of all college-level work.

Faculty and Staff

Program Director
C. Robert Carlson
Daniel F. and Ada L. Rice Campus, Room 132
630.682.6002
carlson@iit.edu

Assistant Program Director
and Director, Forensics & Security Laboratory
William Lidinsky
630.682.6028
lidinsky@iit.edu

Assistant Program Director
and Director, VoIP Laboratory
Carol Davids
630.682.6023
davids@iit.edu

Program & Media Coordinator
Valerie Scarlata
630.682.6005
scarlata@iit.edu

Finance and Special Projects Administrator
Barbara Kozi
630.682.6040
kozi@iit.edu

Director, VoIP Laboratory
Carol Davids
630.682.6023
davids@iit.edu

Industry Associate Professor
Kimont

Assistant Program Director
and Director, Forensics & Security Laboratory
William Lidinsky
630.682.6028
lidinsky@iit.edu

Assistant Program Director
and Director, VoIP Laboratory
Carol Davids
630.682.6023
davids@iit.edu

Faculty
Carlson, Davids, Lindinsky, Scarlata, Trygstad

Part-Time Faculty
Bartek, Fitzgerald, Friedman, Gehrs, P. Gupta, Hajek, Hendry, D. Hood, Howard, Kandemir, M. Kozi, Manov, Scarlata, Wakharia, Xu
Admission Requirements

Admitted students are expected to have satisfied the following General Education Requirements prior to admission. If not, the student must complete them while working on the ITM degree. The degree requires 126 semester hours including transfer and coursework completed at IIT.

Basic Writing Proficiency Requirement
Students must take the IIT English Proficiency Examination before beginning classes at IIT. Within their first year at IIT, students who do not pass the IIT English Proficiency Examination must demonstrate basic writing proficiency by passing a composition course at IIT.

Natural Science or Engineering
Eleven semester hours of natural science or engineering courses. Relevant courses include physics, chemistry, or biology. In some cases, certain technology courses might be applied to this requirement.

Computer Science
Two credit hours of computer programming; may be satisfied by taking ITM 311.

Humanities and Social Science
Nine semester hours. Humanities include literature, philosophy (except logic), and history. Social or behavioral sciences typically include anthropology, geography, political science, psychology, sociology, and economics. Studies must include a minimum of three semester hours in Humanities and three semester hours in Social or Behavioral Sciences.

Mathematics
Five semester hours of mathematics at the level of Math 119 or above. Probability and Statistics is highly recommended.

Free or Technical Electives
Thirty-three semester hours of approved courses. Students should contact the Office of Educational Services for additional information.

Bachelor of Information Technology and Management

Students are required to take 66 semester hours at IIT and transfer 60 semester hours to complete the Bachelor’s Degree for a total of 126 semester hours. This includes 16 information technology courses for a total of 48 semester hours in the major. An additional 18 semester hours outside the major must be taken at IIT in order to satisfy the remaining IIT General Education Requirements.

These include four 300/400 level humanities and social science electives and two IPRO courses. Students must also complete a minimum of 42 semester hours of courses with a significant written and oral communication component, identified with a (C) in the bulletin.

The computer science general education requirement may be satisfied by taking ITM 311.

ITM students completing a minor are strongly encouraged to consider minors which complement their primary program of study; these include (but are not limited to) Industrial Logistics; Industrial Facilities; Manufacturing Technology; Professional and Technical Communications; Management; Technology and Human Affairs; Circuits and Systems; Computer Architecture; and ROTC. Students entering the Bachelor of Information Technology and Management program as freshmen are required to complete a minor.
Information Technology and Management

Bachelor of Information Technology and Management
(Transfer, Part-Time Program)

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses Transferred</td>
<td>60</td>
</tr>
<tr>
<td>(or taken at IIT)</td>
<td></td>
</tr>
<tr>
<td>Humanities Electives</td>
<td>6</td>
</tr>
<tr>
<td>300/400 level courses required</td>
<td></td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>6</td>
</tr>
<tr>
<td>300/400 level courses required</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>ITM Requirements</td>
<td>30</td>
</tr>
<tr>
<td>ITM 301, 302, 311, 312, 411, 421, 440, 448, 461, 471</td>
<td></td>
</tr>
<tr>
<td>ITM Electives</td>
<td>18</td>
</tr>
<tr>
<td>Total Hours</td>
<td>126</td>
</tr>
</tbody>
</table>

Information Technology and Management Curriculum

(students entering as transfer, part-time)*

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 301 Contemporary Op Sys/Hardware I</td>
<td>3</td>
</tr>
<tr>
<td>ITM 311 Intro to Software Development</td>
<td>3</td>
</tr>
<tr>
<td>ITM 421 Data Modeling and Applications</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 302 Contemporary Op Sys/Hardware II</td>
<td>3</td>
</tr>
<tr>
<td>ITM 311 Intro to Systems Software Programming</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 440 Intro to Data Networks and the Internet</td>
<td>3</td>
</tr>
<tr>
<td>ITM 441 Intermediate Software Development</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 461 Internet Technologies and Web Design</td>
<td>3</td>
</tr>
<tr>
<td>ITM 440 Systems and Network Security</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 471 Project Management for Info Technology</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours

66

* See the ITM website at http://www.cpd.iit.edu/itm for additional undergraduate transfer student curriculum structure.
Bachelor of Information Technology and Management (Freshman Program)

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM Requirements</td>
<td>32</td>
</tr>
<tr>
<td>ITM 100, 301, 302, 311, 312, 411, 421, 440, 448, 461, 471</td>
<td></td>
</tr>
<tr>
<td>ITM Electives</td>
<td>18</td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>5</td>
</tr>
<tr>
<td>Two courses beyond the level of MATH 119 including BUS 221 or PSYC 203</td>
<td></td>
</tr>
<tr>
<td>Engineering Requirement</td>
<td>3</td>
</tr>
<tr>
<td>EG 225</td>
<td></td>
</tr>
<tr>
<td>Natural Science and Engineering Requirements</td>
<td>8</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>Psychology Requirement</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 301</td>
<td></td>
</tr>
<tr>
<td>Technical Communication Requirement</td>
<td>3</td>
</tr>
<tr>
<td>COM 421</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Minor Electives</td>
<td>15</td>
</tr>
<tr>
<td>Free Electives</td>
<td>12</td>
</tr>
<tr>
<td>(may be used for additional ITM specialization)</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>126</td>
</tr>
</tbody>
</table>
Information Technology and Management Curriculum

(Students entering as freshmen)

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG 225 Engineering Graphics for Non-Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MATH Elective</td>
<td>3</td>
</tr>
<tr>
<td>Natural Science or Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 100 Introduction to the Profession</td>
<td>2</td>
</tr>
<tr>
<td>ITM 301 Contemporary Op Sys/Hardware I</td>
<td>3</td>
</tr>
<tr>
<td>ITM 311 Intro to Software Development</td>
<td>3</td>
</tr>
<tr>
<td>BUS 221 Undergraduate Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Natural Science or Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 302 Contemporary Op Sys/Hardware II</td>
<td>3</td>
</tr>
<tr>
<td>ITM 312 Introduction to Systems Software Prog</td>
<td>3</td>
</tr>
<tr>
<td>ITM 461 Internet Technologies and Web Design</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 440 Intro to Data Networks and the Internet</td>
<td>3</td>
</tr>
<tr>
<td>ITM 441 Intermediate Software Development</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 448 System and Network Security</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 301 Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 421 Data Modeling and Applications</td>
<td>3</td>
</tr>
<tr>
<td>COM 421 Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 471 Project Management for Info Technology</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO 497 Interprofessional Project</td>
<td>3</td>
</tr>
<tr>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>ITM Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours | **126**
Information Technology and Management

Information Technology Curriculum Specializations

The ITM elective may be chosen from one or more of the following course specializations:

Systems Security
Focuses on application, data, and network security and the management of information technology security.

- ITM 428 Database Security
- ITM 451 Distributed Workstation Sys. Administration
 OR
- ITM 452 Client-Server System Administration
- ITM 458 Operating System Security
- ITM 478 Information Systems Security Management

Data Management
Focuses on the design, development and administration of traditional and Internet-based data management.

- ITM 414 Visual Programming Environments
- ITM 422 Advanced Database Management
- ITM 428 Database Security
- ITM 463 Internet Application Development

Internet Development and Electronic Commerce
Focuses on the design and development of fully-interactive web sites and applications for Internet deployment.

- ITM 441 Network Applications and Operations
- ITM 462 Web Site Application Development
- ITM 463 Internet Application Development
- ITM 465 Dynamic Web Page Development
- ITM 466 XML Technologies and Web Services

IT Entrepreneurship and Management
Focuses on the managerial and entrepreneurial skills needed to launch a new enterprise.

- ITM 441 Network Applications and Operations
- BUS 210 Financial and Managerial Accounting
- BUS 301 Theory of Organization and Management
- BUS 305 Operations Management
- BUS 371 Introduction to Marketing

Software Development
Focuses on programming and the development of sophisticated applications.

- ITM 412 Advanced Structured/System Programming
- ITM 414 Visual Programming Environments
- ITM 415 Advanced Software Development
- ITM 462 Web Site Application Development
- ITM 478 Information System Security Management

System Administration
Focuses on the administration and management of servers.

- ITM 441 Network Applications and Operations
- ITM 451 Distributed Workstation System Admin.
 OR
- ITM 452 Client-Server System Administration
- ITM 454 Operating System Virtualization
 OR
- ITM 458 Operating System Security
- ITM 456 Intro to Open Source Operating Systems

Networking and Communications
Focuses on network applications and management.

- ITM 441 Network Applications and Operations
- ITM 451 Distributed Workstation System Admin.
 OR
- ITM 452 Client-Server System Administration
- ITM 478 Information System Security Management
- ITM 491 Undergraduate Research
IIT/College of DuPage and IIT/Joliet Junior College Dual Admissions Programs

IIT/College of DuPage and IIT/Joliet Junior College Dual Admissions Programs Students who meet the requirements of the Dual Admissions Program (DAP) may enroll simultaneously at the College of DuPage (COD) or Joliet Junior College (JJC) and IIT. Students accepted into the DAP will have access to advising and other services from both institutions. Students who successfully complete the institutional course requirements of both institutions under the DAP will be awarded an Associate’s Degree from COD and a Bachelor of Information Technology and Management from IIT.

Eligibility for the program
Students applying to the DAP must be enrolled in one of the following programs:

At COD: Associate of Applied Science Degree in Computer Information Systems or Associate of Applied Science Degree in Computer Internetworking Technologies

At JJC: Associate of Applied Science Degree in Computer Information Systems; Network Specialist, Programming or Web Design and Administration Options

Students must have and maintain a cumulative grade point average of at least 3.0 at COD or JJC to be eligible for admission to IIT. Students must make satisfactory academic progress at COD, as defined by COD, or at JJC, as defined by JJC.

Application process
Applicants must complete a Statement of Intent form, which permits the exchange of academic admission and advising information between IIT and COD or JJC. Applicants must also complete the application process at both COD or JJC and IIT in order to be admitted to both institutions. The IIT application may be submitted only for a bachelor’s program in Information Technology and Management. Admission to other IIT programs may have additional requirements that are outside the scope of the program.

Academic Program Requirements
Students must follow each institution’s policies regarding admission, course enrollment, transfer hours, probation, dismissal and re-instatement. Transcripts must be sent to the IIT Office of Educational Services each semester for each student attending COD or JJC and enrolled in the DAP. IIT will provide COD and JJC with major updates, course prerequisites and program requirements for the Information Technology and Management bachelor’s degree completion program.

Graduation Requirements
Students enrolled in the DAP must follow the COD or JJC catalog to satisfy requirements for the Associate’s Degree and the requirements set out in the IIT Undergraduate Bulletin in effect at the time of admission into the DAP for the Baccalaureate Degree.
Mathematics and Science Education

Department Web site: www.iit.edu/departments/msed

The Department of Mathematics and Science Education has an education program that prepares students for a teaching certificate at the secondary level while they receive a Bachelor of Science degree in biology, chemistry, physics, applied mathematics, computer sciences, or an engineering discipline.

The department’s guiding principle is that those who can, do; those who understand, teach. That is, a math or science teacher must know the subject matter as well as how to teach it. The Department of Mathematics and Science Education is a discipline-based teaching program. Students will learn how to effectively teach their chosen disciplines because the curriculum focuses on each student’s chosen discipline.

The program draws primarily from constructivist epistemology as a means by which knowledge is developed and fully recognizes the individual perspectives from which learners approach school and life situations. Additionally, the knowledge base utilizes contemporary research on teaching and learning and is philosophically and substantively aligned with Illinois Content Standards and the professional subject-matter organizations. Graduates of the program will be leaders in instructional innovation in mathematics and science.

The overall organizational framework for the program borrows heavily from Shulman’s (1986) Knowledge of Teaching with the ultimate focus on the Teacher as Transformer of Subject Matter. At an operational level, the program focuses on the development, revision, and elaboration of six primary domains of knowledge that both theory and research have indicated are essential for effective instruction. It is this combination of domains of knowledge that distinguishes the expert teacher from others possessing one or more of the following domains of knowledge: subject matter knowledge, pedagogical knowledge, knowledge of schools, knowledge of learners, curricular knowledge, and pedagogical content knowledge.

Within the Knowledge Growth in Teaching model, the IIT program is committed to providing students with experiences that help them develop a full range of knowledge and skills in the areas of subject matter, pedagogy, pedagogical content knowledge, schools, learners and curriculum within a framework of moral and ethical societal norms, including a commitment to equity and diversity. From a constructivist perspective, individuals are continually structuring knowledge and revising their knowledge in response to differing contexts and new knowledge/perceptions. Consequently, it is important to note that the program does not view any of the domains of knowledge as completed outcomes upon graduation. Rather, the domains provide a basis for continued lifelong professional development.

Specific Program Outcomes

Program graduates will demonstrate their knowledge of the stated domains of knowledge by

- the development of integrated and in-depth subject matter knowledge in topical areas directly relevant to teaching content specialty (Subject Matter Knowledge)

- the successful development of instructional materials/plans consistent with research on teaching/learning and supports emotional development (Pedagogical Knowledge)

- successfully working within the school and community in a manner that fosters community and state instructional goals (Knowledge of Schools)

- the development and implementation of instructional materials and plans that are consistent with current cognitive and social theories on student learning and personal development for regular as well as special needs students (Knowledge of Learners)

- appropriate selection of instructional/curriculum materials relative to local, state, and national curriculum goals and reforms, and exhibited ability to analyze and revise materials so that they are consistent with appropriate curriculum goals (Curricular Knowledge)

- successful development and implementation of instruction that represents current subject matter to students in a form that promotes in-depth understanding and ability to apply knowledge to new and unique situations (Pedagogical Content Knowledge)
Faculty

Chair
Norman G. Lederman
3424 S. State
Room 4007
312.567.3658

Professors
N. Lederman

Associate Professors
Nieswandt, Zawojewski

Assistant Professors
Berkaliev, Fluet, Meyer, Newman

Mathematics and Science Education Secondary Science or Mathematics Teaching Certification*

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>–Sophomore year–</td>
<td></td>
</tr>
<tr>
<td>MSED 200 Analysis of Classrooms**</td>
<td>3</td>
</tr>
<tr>
<td>MSED 250 Middle and Secondary School Curriculum/Foundations</td>
<td>3</td>
</tr>
<tr>
<td>–Junior year–</td>
<td></td>
</tr>
<tr>
<td>MSED 300 Instructional Methods/Strategies I</td>
<td>3</td>
</tr>
<tr>
<td>MSED 320 Inquiry and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>MSED 350 Informal Education**</td>
<td>3</td>
</tr>
<tr>
<td>–Senior year–</td>
<td></td>
</tr>
<tr>
<td>MSED 400 Instructional Methods/Strategies II</td>
<td>3</td>
</tr>
<tr>
<td>MSED 450 Professional Internship</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>24</td>
</tr>
</tbody>
</table>

* This program has been approved by Illinois State Board of Education.

** Practicum and Seminar
Mechanical, Materials, and Aerospace Engineering

The Department of Mechanical, Materials, and Aerospace Engineering offers the Bachelor of Science degree in Mechanical Engineering (B.S.M.E.), Materials Science and Engineering (B.S.M.S.E.), and Aerospace Engineering (B.S.A.E.). These degree programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

The objectives of the MMAE undergraduate programs are to educate aerospace, mechanical and materials engineering students for a broad range of professional careers, provide the inspiration for lifelong learning, and prepare students for advanced studies at the graduate level. Recognizing the changing professional environment that MMAE graduates will encounter, the programs aim to develop graduates who:

- Possess a strong foundation in mathematics, science and engineering and who are proficient in the engineering sciences on which the major discipline is based
- Are able to link science and engineering principles to identify, formulate and solve engineering problems in professional practice and research and development contexts
- Are able to design and conduct experiments, as well as analyze and interpret data
- Have experience working in multidisciplinary and interprofessional teams
- Utilize effective oral, written, graphical and computational communication skills
- Understand the economic, ethical, societal, environmental and global contexts of their professional activities
- Pursue lifelong learning
- Translate knowledge of their respective disciplines to a broad spectrum of professions

Objectives for the respective degree programs are presented below:

Aerospace Engineering (AE)
The AE program objectives are to develop graduates with an understanding of aircraft and spacecraft design and analysis using the principles of aerodynamics, structures and materials, thermodynamics, propulsion, and flight mechanics.

Mechanical Engineering (ME)
The ME program objectives are to develop graduates with the ability to perform engineering design and analysis tasks using the principles of solid and fluid mechanics, manufacturing, thermal, structural, and control systems.

Materials Science and Engineering (MSE)
The MSE program objectives are to develop graduates who understand the structure, properties, processing, performance, selection and service behavior of engineering materials, including metals, ceramics, polymeric and composite materials. This knowledge applies to design of new materials, improvement of existing materials, and optimization of methods of manufacture.

Faculty

Chair
Jamal Yagoobi
Room 243 Engineering 1
312.567.3239

Associate Chair for Undergraduate Studies
John Kallend
Room 205 Engineering 1
312.567.3054

Professors
Barnett, Cramb, Kallend (Associate Chair, Undergraduate Studies), Meade, Nagib (Rettaliata Distinguished Professor), Nair, Nash, Wark, Williams, Yagoobi

Associate Professors
Cassel (Associate Chair, Graduate Studies), Clack, Gosz, Mostovoy, Pervan, Raman, Rempfer, Ruiz, Tin

Assistant Professors
Peet, Qian, Spenko, Vural, B. Wu

Lecturer
Cesarone

Research Professors
Broutman, Copley, Kumar, Sciammarella

Adjunct Professors
Khounsari, Morel, Natarajan, Patwardhan, Routbort, Singh, Thakkar

Faculty Emeriti
Bonthron, Breyer, Dix, Donnell, Graham, Higgins, Kalpakjian, Lavan, Morkovin, Porter, Rasof, Rettaliata, Way
Mechanical, Materials, and Aerospace Engineering

Students are introduced to the scope of the engineering profession in the first-semester course Introduction to the Profession, and to the ethical, economical, safety, environmental and other responsibilities of being a professional engineer. Strong emphasis is placed on development of oral and written communication skills. Accompanying courses in mathematics and the basic sciences provide the foundation for later studies of engineering sciences relevant to the students' major fields of study. These areas include: energy, structures, and motion for the ME major; materials, structure-property relations, materials processing, service behavior, and design for the MSE major; and structures and materials, propulsion, and aerodynamics for the AE major. Regardless of the students’ intended major, all MMAE students have a common curriculum for the first three semesters.

The second year emphasizes building a foundation for the eventual study of engineering design. The engineering sciences offer a rational approach to solving detailed problems encountered in major-specific courses, including the IPROs and capstone design courses of the third and fourth years.

In the third year, students begin the transition to professional practice and learn to develop sound engineering judgment by studying open-ended problems and realistic constraints. Students build further on the engineering sciences, and approximately one-third of major-specific coursework is devoted to the introduction of tangible engineering design. The student's professional experience is developed by participation in a minimum of two interprofessional projects in the third and fourth years.

The process continues into the fourth year where the three programs culminate in senior-year projects. Mechanical engineering projects involve design of thermal and mechanical systems; materials science and engineering students develop new or optimized materials, processing routes, or selection schemes; and aerospace engineering students produce conceptual designs of aircraft and spacecraft missions.

Advising

The MMAE department considers the advising of students an important obligation. Each student must meet with a faculty advisor during the advising period each semester. Students must closely adhere to course prerequisites to maximize academic performance and satisfy requirements for ABET accreditation. Faculty advisors for all MMAE students can be obtained from the department coordinator.

Program requirements may not be waived, nor will substitutions be permitted, without the approval of the departmental undergraduate studies committee.

Double Majors

A double major in ME and AE, ME and MSE, or AE and MSE may generally be completed in one additional semester. Interested students should consult their academic advisor.
Minors

Minors available to students who wish to broaden their knowledge can be found on pages 156–158. In all programs, two of the required minor courses substitute for two technical electives. Minors other than those listed below may be undertaken with the approval of the student’s faculty advisor and the MMAE Undergraduate Studies Committee. In the event that a required course for a minor is also required for the major, an approved substitution must be made. Application to take a minor is typically made in the student’s third or fourth semester. Minors require completion of additional courses.

Among the minors that are available to ME, MSE and AE students are:
- Aerospace Engineering (for ME students only)
- Air Force Aerospace Studies
- Artificial Intelligence
- Construction Management
- Electromechanical Design and Manufacturing (for ME and AE students only)
- Energy/Environment/Economics (E3)
- Environmental Engineering
- Management
- Materials Engineering (for ME or AE students only)
- Mechanical Engineering (for AE students only)
- Military Science
- Naval Science
- Polymer Science and Engineering
- Premedical Studies
- Software Engineering

Graduate Courses

Graduate courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current *IIT Bulletin: Graduate Programs* for course descriptions.
Mechanical Engineering

Mechanical engineering is an essential part of most industries and modern technologies, and includes the analysis, design and development of machines and structures that involve motion. Mechanical engineers are employed in areas such as the design and control of machinery; the development of means of transportation including automobiles, aircraft, space and marine vehicles, and railroads; computer-aided design and manufacture of products, consumer goods, devices and industrial equipment; medical technology utilizing mechanical and electromechanical devices; the generation of energy from fossil and nuclear fuels; and the utilization, storage and distribution of alternative energy sources.

Bachelor of Science in Mechanical Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering Requirements</td>
<td>51</td>
</tr>
<tr>
<td>Material Science Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MS 201</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>14</td>
</tr>
<tr>
<td>PHYS 123, 221, 224, 300</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics Requirement</td>
<td>2</td>
</tr>
<tr>
<td>EG 105</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Electives</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>130</td>
</tr>
</tbody>
</table>

IIT Undergraduate Bulletin 2008–2010
Mechanical Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 100 Introduction to the Profession</td>
<td>3</td>
<td>MS 201 Material Science</td>
<td>3</td>
</tr>
<tr>
<td>EG 105 Engineering Graphics and Design</td>
<td>2</td>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 201 Mechanics of Solids I</td>
<td>3</td>
<td>MMAE 202 Mechanics of Solids II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>MMAE 350 Computational Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
<td>PHYS 224 General Physics III Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 305 Dynamics</td>
<td>3</td>
<td>MMAE 306 Analysis/Design of Machine Elements</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 310 Fluid Mechanics</td>
<td>4</td>
<td>MMAE 321 Applied Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 320 Thermodynamics</td>
<td>3</td>
<td>MMAE 322 Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 300 Instrumentation Laboratory</td>
<td>3</td>
<td>MMAE 371 Engineering Materials and Design</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 430 Engineering Measurements</td>
<td>4</td>
<td>MMAE 432 Design of Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 433 Design of Thermal Systems</td>
<td>3</td>
<td>MMAE 43 System Analysis and Control</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 485 Manufacturing Processes</td>
<td>3</td>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>3</td>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 130

A technical elective is a 300- or higher level course in any engineering discipline (other than required MMAE courses or their equivalent) or in mathematics, chemistry, physics or computer science. However, not all such courses are acceptable as technical electives. See your faculty advisor for a determination of which courses are acceptable. In addition, ECE 218 and ECON 423 are permitted. Any substitutions require written approval by the associate chair of the department.
Materials Science and Engineering

The materials science and engineering program aims to develop an understanding of the structure, properties, processing and service behavior of engineering materials, including metallic, ceramic, polymeric and composite materials. This understanding fosters both development of new materials and improvement of existing materials in order to optimize manufactured products. Laboratory experience is an important part of the program and emphasizes microstructural characterization using modern analytical techniques, such as optical and electron microscopy and x-ray diffraction, materials processing, determination of the physical and mechanical behavior of materials, and materials and process selection. Graduating students find employment opportunities in a wide range of industries requiring knowledge of materials development and/or optimization, processing and selection.

Bachelor of Science in Materials Science and Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Engineering Requirements*</td>
<td>46</td>
</tr>
<tr>
<td>MMAE 100, 201, 202, 363 (or 320), 365, 370, 371, 430, 463, 465, 467 (or 470), 468 (or 486), 476, 482, 485</td>
<td></td>
</tr>
<tr>
<td>Material Science Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MS 201</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>14</td>
</tr>
<tr>
<td>PHYS 123, 221, 224, 300</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics Requirement</td>
<td>2</td>
</tr>
<tr>
<td>EG 105</td>
<td></td>
</tr>
<tr>
<td>Materials Engineering Electives or approved Technical Electives</td>
<td>9</td>
</tr>
<tr>
<td>Humanities and Social Sciences Electives</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>128</td>
</tr>
</tbody>
</table>

* MMAE 350 is recommended but not required.
Mechanical, Materials, and Aerospace Engineering

Materials Science and Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 100 Introduction to the Profession</td>
<td>3</td>
<td>MS 201 Material Science</td>
<td>3</td>
</tr>
<tr>
<td>EG 105 Engineering Graphics and Design</td>
<td>2</td>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 201 Mechanics of Solids I</td>
<td>3</td>
<td>MMAE 202 Mechanics of Solids II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>PHYS 224 General Physics III Lecture</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 300 Instrumentation Laboratory</td>
<td>3</td>
<td>MMAE 463 Structures and Properties II</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 365 Structures and Properties I</td>
<td>3</td>
<td>MMAE 465 E&M/Optical Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 363 Metallurgical and Materials Thermo</td>
<td>3</td>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 370 Materials Laboratory I</td>
<td>3</td>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 371 Engineering Materials and Design</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 467 Fund Principles of Polymer Materials OR</td>
<td>3</td>
<td>MMAE 430 Engineering Measurements**</td>
<td>4</td>
</tr>
<tr>
<td>MMAE 470 Introduction to Polymer Science</td>
<td>3</td>
<td>MMAE 468 Introduction to Ceramic Materials OR</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 476 Materials Laboratory II</td>
<td>3</td>
<td>MMAE 486 Properties of Ceramics</td>
<td></td>
</tr>
<tr>
<td>MMAE 485 Manufacturing Processes</td>
<td>3</td>
<td>MMAE 482 Composites</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective*</td>
<td>3</td>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Technical Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 128

* A technical elective is a 300- or higher level course in any engineering discipline (other than required MMAE courses or their equivalent) or in mathematics, chemistry, physics or computer science. However, not all such courses are acceptable as technical electives. See your faculty advisor for a determination of which courses are acceptable. In addition, ECE 218 and ECON 423 are permitted. Any substitutions require written approval by the associate chair of the department.

** Four (4) credit hours of undergraduate research may be substituted.

MSE students may satisfy a materials design experience requirement either through appropriate selection of a senior year IPRO or by taking three credit hours of MMAE 494 as a technical elective. In either case, advisor approval is required.
Aerospace Engineering

Aerospace engineering explores both the design and manufacture of aircraft, as well as the design and flight of vehicles beyond the earth’s atmosphere. Knowledge of aerodynamics, structures and materials, propulsion systems, and flight mechanics and controls are important to this field. Aerospace engineers are primarily employed in civil aeronautics, the defense industry and the space program. However, applications of aerospace technology are also found in related areas such as ground and undersea transportation systems, pollution control, wind power and the effects of wind on structures, and the development and use of advanced materials.

Bachelor of Science in Aerospace Engineering

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Engineering Requirements</td>
<td>59</td>
</tr>
<tr>
<td>MMAE 100, 200, 202, 304, 311, 312, 313, 315, 320, 350, 372, 410, 411, (412 or 414), 415, (IPRO-MMAE 413 or IPRO-MMAE 416), 443, 450, 452</td>
<td></td>
</tr>
<tr>
<td>Aerospace Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 417 or 418 or 472</td>
<td></td>
</tr>
<tr>
<td>Material Science Requirement</td>
<td>3</td>
</tr>
<tr>
<td>MS 201</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>18</td>
</tr>
<tr>
<td>MATH 151, 152, 251, 252</td>
<td></td>
</tr>
<tr>
<td>Physics Requirements</td>
<td>11</td>
</tr>
<tr>
<td>PHYS 123, 221, 224</td>
<td></td>
</tr>
<tr>
<td>Chemistry Requirement</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 124</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics Requirement</td>
<td>2</td>
</tr>
<tr>
<td>EG 105</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Electives</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Project</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 129
Aerospace Engineering Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 100 Introduction to the Profession</td>
<td>3</td>
<td>MS 201 Material Science</td>
<td>3</td>
</tr>
<tr>
<td>EG 105 Engineering Graphics and Design</td>
<td>2</td>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 124 Principles of Chemistry I</td>
<td>4</td>
<td>PHYS 123 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151 Calculus I</td>
<td>5</td>
<td>MATH 152 Calculus II</td>
<td>5</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 200 Introduction to Mechanics</td>
<td>3</td>
<td>MMAE 202 Mechanics of Solids II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221 General Physics II</td>
<td>4</td>
<td>MMAE 320 Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251 Multivariate and Vector Calculus</td>
<td>4</td>
<td>MMAE 313 Fluid Mechanics without Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>PHYS 224 General Physics III Lecture</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>MATH 252 Introduction to Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 315 Aero Lab I</td>
<td>4</td>
<td>Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 350 Computational Mechanics</td>
<td>3</td>
<td>MMAE 304 Mechanics of Aerostructures</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 311 Compressible Flow</td>
<td>3</td>
<td>MMAE 450 Computational Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 312 Aerodynamics of Aerospace Vehicles</td>
<td>3</td>
<td>MMAE 452 Aerospace Propulsion</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
<td>MMAE 372 Aerospace Materials</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 414 Aircraft Design I*</td>
<td>3</td>
<td>MMAE 416 Aircraft Design II*</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>MMAE 412 Spacecraft Design I*</td>
<td></td>
<td>MMAE 413 Spacecraft Design II*</td>
<td></td>
</tr>
<tr>
<td>MMAE 410 Aircraft Flight Mechanics</td>
<td>3</td>
<td>MMAE 415 Aero Lab II</td>
<td>4</td>
</tr>
<tr>
<td>MMAE 411 Spacecraft Dynamics</td>
<td>3</td>
<td>Aerospace Elective**</td>
<td>3</td>
</tr>
<tr>
<td>MMAE 443 Systems Analysis and Control</td>
<td>3</td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credit Hours | **129**

* Students must choose either the MMAE 414 and MMAE 416 sequence or the MMAE 412 and MMAE 413 sequence.

** Students must choose either MMAE 417 or MMAE 472 or MMAE 418.
Institute of Psychology

Institute Web site: www.iit.edu/psych

Psychology’s objective is to understand the manner in which organizations, human beings, and animals behave, learn, and interact, as well as the ways in which their behavior can be modified. The Institute’s curriculum encompasses the past 25 years’ worth of major changes in psychology and prepares students for modern careers in psychology or other allied professions.

The Institute offers a distinct undergraduate program that draws upon the strengths of highly successful graduate programs in clinical, industrial/organizational, and rehabilitation psychology. Designed for highly motivated, career-oriented students, this program emphasizes the integration of applied research with faculty, practical experience in professional settings, and traditional classroom activities. It is characterized by faculty mentorship, individual advising, and group activities with faculty, graduate students, and other undergraduate students.

The curriculum is customizable and supports students with diverse career goals. Students who have interest in such areas as sports counseling, child care, disability, or human resources can include preliminary preparation for those professions in their studies. To assist students in developing a more coherent path, the Institute offers three specialty tracks from which to choose. These are: Culture, Conflict and International Relations; Psychology of Emerging Technologies; The Human Environment.

The objectives of the Bachelor of Science degree program in psychology are:

- To prepare students for baccalaureate level careers that draw on an understanding of human behavior
- To provide a basic understanding of research methods in the behavioral sciences
- To incorporate the recommendations of the American Psychological Association for undergraduate education in the four basic areas of social differences, individual differences, physiology, and learning and cognition
- To prepare students for graduate training in psychology

Most psychologists hold advanced degrees and the program offers excellent preparation for graduate school. A bachelor’s degree in psychology offers diverse options, including those in the burgeoning areas of geriatrics, health and sports counseling, behavioral medicine, and managed health care, as well as traditional settings such as schools, courts, hospitals, industries and research laboratories. Many students will find psychology highly beneficial as a pre-professional major for advanced studies in medicine, dentistry, law, business, or public administration.

Faculty

Dean
M. Ellen Mitchell
Room 252 Life Sciences
312.567.3500

Professors
Ayman, Corrigan, Huyck, Lam, Mitchell, Schleser

Associate Professors
Hopkins, Morris, Sher, Young

Assistant Professors
Bach, Cigularov, Ellington, Gordon, Lane, Lee, Mead

Clinical Associate Professor
Boukydis

Clinical Assistant Professor
Larson

Visiting Assistant Professor
Harmon

Faculty Emeriti
Geist, Wolach
Institute of Psychology

Bachelor of Science in Psychology

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology Requirements</td>
<td>34</td>
</tr>
<tr>
<td>PSYC 100, 101, 204, 221, 222, 301, 303, 310, 406, 409, 423, 435 or 436</td>
<td></td>
</tr>
<tr>
<td>Mathematics Requirements</td>
<td>8-12</td>
</tr>
<tr>
<td>PSYC 203, MATH 119 & 122, OR MATH 148 & 149, OR MATH 151</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Natural Sciences Requirements</td>
<td>11</td>
</tr>
<tr>
<td>Suggested courses: BIOL 107 and/or 115, and PHYS 211</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
<tr>
<td>Psychology Capstone Project</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td>37-45</td>
</tr>
<tr>
<td>Total Hours</td>
<td>126-130</td>
</tr>
</tbody>
</table>

* A Biology class with lab is required. For general education requirements, see page 27.
Psychology Curriculum

Semester 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 100 Introduction to the Profession I</td>
<td>2</td>
</tr>
<tr>
<td>PSYC 221 Human Behavior, Growth and Learning</td>
<td>3</td>
</tr>
<tr>
<td>Science Sequence Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Math Sequence Elective**</td>
<td>4</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 101 Introduction to the Profession II</td>
<td>2</td>
</tr>
<tr>
<td>PSYC 222 Brain, Mind and Behavior Behavior</td>
<td>3</td>
</tr>
<tr>
<td>Science Sequence Elective*</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Math Sequence Elective**</td>
<td>5</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Semester 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 203 Undergrad Stats for Behavioral Sciences†</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 301 Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 204 Experimental Psych/Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 303 Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Science Sequence Elective*</td>
<td>3</td>
</tr>
<tr>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 310 Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 409 Psychological Testing</td>
<td>3</td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project I</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 435 Early Development</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>PSYC 436 Adult Development</td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 423 Learning Theory</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 426 Cognition</td>
<td></td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project II</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 406 History and Systems of Psychology††</td>
<td>3</td>
</tr>
<tr>
<td>Psychology Capstone Project</td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours

126

*CHEM 124 & 125, BIOL 107 & 115, or PHYS 211 & 212, take 2 in one discipline and 1 from a different discipline. Biology and Physics are encouraged. A Biology class with lab is required.

**Choose from MATH 119 & 122, MATH 148 & 149, or MATH 151 according to Math Placement exams.

† Must take psychology statistics, not business statistics.

‡ Must be 4th year/senior to enroll.

†† Option is available to take a 2 semester Psychology Capstone Project.
Specialty Tracks

In order to assist students in developing a sound career path, the Institute of Psychology offers the undergraduate psychology degree with optional specialty tracks. The selection of a track is not a degree requirement, but it is encouraged. These tracks are distinct from a minor by virtue of their cross disciplinary and in-depth nature. Some students may elect to pursue a double major or a minor which would not be precluded by these specialty tracks. A specialty consists of 15 credit hours from courses in the track in which at least two of the classes are higher than the 200-level. Students take these classes as electives and they are expected to incorporated the specialty content area into their final capstone project. The courses for these tracks are listed online at www.iit.edu/psych and may be obtained from advisors.

Culture, Conflict, and International Relations

Today's world is characterized by diversity that contributes to richness of culture and also to tensions associated with those differences. The global economy and the reach of information systems transcend political and national boundaries. Students who select this track will be prepared for careers that draw on strengths in human relations, cross cultural knowledge and negotiation.

Psychology of Emerging Technologies

This specialty track focuses on the human dimension of technological development. Just as advances in computer science have lead to changes in relationships, business communication, and accessibility, emerging technologies such as artificial intelligence, nanotechnology, and genetic engineering will produce equally broad social changes in the future. The students who complete this track may wish to pursue careers in law, sociology, genetic counseling, humanities, public policy, or journalism.

The Human Environment

Architecture influences many aspects of human life including work, leisure activities, family life, and ultimately social interaction. Public spaces and multi-use buildings represent current areas of particular interest to architects whose attention is increasingly on sustainability. The built environment must now, more than ever before, include consideration of human needs, behavioral patterns, social concerns, resources both natural and economic, environmental consciousness, and planning for the future. Students who complete this track may wish to pursue careers in architecture, city planning, urban development, resource management, business, conservation, human factors, or consulting psychology.
Optional Programs

Accelerated Combined-Degree Programs

Today, an undergraduate degree doesn’t necessarily guarantee a job in the workforce or provide long-term career security. However, the Institute of Psychology offers combined, accelerated undergraduate and graduate programs that help minimize both concerns. These flexible programs give students solid professional credentials in more than one field-improving their marketability and expanding their career options.

A specialization in psychology may be used as the basis for the combined undergraduate-graduate professional degree programs in law (B.S./J.D.), business (B.S./M.B.A.), public administration (B.S./M.P.A.), rehabilitation counseling (B.S./M.S.) or personnel and human resources development (B.S./M.S.) offered by IIT. Students wishing to participate in these options must indicate this as early as possible. With the consent of the Institute of Psychology dean, undergraduate psychology students may enroll in some graduate-level psychology courses. Close communication with advisors is required for students to reach their target completion dates for accelerated programs. Students must also meet the minimum graduate program admission criteria, apply, and be accepted into the graduate program they wish to enter.

For undergraduate psychology majors, it is possible to earn a Masters of Science in Rehabilitation Counseling or a Masters of Science in Personnel and Human Resources Development (PHRD) in one-and-a-half years instead of the normal two years. By taking psychology courses that apply to the rehabilitation counseling or PHRD program, graduate program coursework can be reduced by up to 15 credit hours, or one full-time semester.

BS/MS Rehabilitation

IIT’s Rehabilitation Counseling Master’s Program prepares students to assume vital roles as counselors fully qualified to help in the vocational, educational and personal adjustment of people with physical, mental, and emotional disabilities.

Since its inception, IIT’s Rehabilitation Counseling Education Program has been continuously funded by the Rehabilitation Services Administration of the U.S. Department of Education to provide rehabilitation-counseling education. The Council of Rehabilitation Education has accredited the program since 1975. IIT rehabilitation graduates are eligible to become nationally certified rehabilitation counselors and licensed professional counselors in Illinois.

U.S. News & World Report ranked the Rehabilitation Counseling Program in the top 15 in the nation.

Current Research Projects

- Assessment of readiness for change and treatment matching
- Psychosocial adjustment to disability and chronic illness
- Traumatic brain injury rehabilitation and neuropsychological assessment
- Disability and health
- Technology applied to human behavior and rehabilitation

Rehabilitation Counseling Courses

Students in the accelerated program may take the following courses as part of required or elective courses for the B.S. in Psychology. If taken as an undergraduate student, the courses listed below do not have to be repeated for the graduate Rehabilitation Counseling program. A grade of “B” or better is required for courses to be used toward a graduate degree.

PSYC 410 Vocational Rehabilitation
PSYC 411 Medical Aspects of Disabling Conditions
PSYC 412 Multicultural and Psychosocial Aspects of Disability
PSYC 513 Assessment in Rehabilitation Counseling
PSYC 523 Introduction to Theories of Psychotherapy
PSYC 557 Pre-Practicum in Rehabilitation Counseling
PSYC 562 Job Placement
PSYC 563 Human Growth and Career Development
PSYC 583 Rehabilitation Engineering Technology I
PSYC 590 Introduction to Psychiatric Rehabilitation
BS/MS Personnel and Human Resources Development

The Personnel and Human Resources Development Master’s Program is for individuals interested in careers in highly dynamic environments such as management consulting, human resources management, industrial relations, and consumer behavior.

Housed within the Industrial/Organizational Psychology Program, the Personnel and Human Resources Development program is based on a scientist/practitioner model and the guidelines of the Society of Industrial and Organizational Psychology, Division 14, of the American Psychology Association.

The most recent Princeton Review’s The Gourman Report of Graduate Programs ranked the IIT Industrial/Organizational Psychology program thirteenth in the nation.

Current Research Projects
- Women in the Workplace
- Leadership
- Training
- Organizational Effectiveness
- Employee Selection
- Customer Service Climate

Personnel and Human Resources Development Courses

Students in the accelerated program may take the following courses as part of required or elective courses for the B.S. in Psychology. If taken as an undergraduate student, the courses listed below do not have to be repeated for the graduate Personnel and Human Resources Development programs. A grade of “B” or better is required for courses to be used toward a graduate degree.

PSYC 556 Organizational Psychology
PSYC 502 Social Bases of Behavior
PSYC 545 Graduate Statistics I
PSYC 546 Graduate Statistics II
PSYC 503 Learning, Cognition, and Motivation

IIT/College of DuPage Dual Admission 2+2 Program

Students who meet the requirements of the Dual Admission Program (DAP) may enroll simultaneously at the College of DuPage (COD) and IIT. Students accepted into the DAP will have access to advising and other services from both institutions. Students who successfully complete the institutional course requirements of both institutions under the DAP will be awarded an Associate’s Degree from COD and a Bachelor of Science degree in Psychology from IIT.

Eligibility for the program

Students applying to the program must have a cumulative grade point average of at least 3.0 either in high school or at COD to be eligible for admission to the DAP. Students must make satisfactory academic progress at COD, as defined by COD and IIT, to remain in the program.

Application Process

 Applicants must complete a Statement of Intent form which permits the exchange of academic, admission and advising information between IIT and COD. Applicants must also complete the application process at both COD and IIT in order to be admitted to both institutions. The IIT application may be submitted only for a bachelor’s program in Psychology. Admission to other IIT programs may have additional requirements that are outside the scope of this program.

Academic Program Requirements

Students must follow each institution’s policies regarding admission, course enrollment, transfer hours, probation, dismissal, and reinstatement. Transcripts must be sent to the IIT Office of Educational Services each semester for each student attending COD and enrolled in the DAP. IIT will provide COD with major and course updates, course prerequisites and program requirements for the Psychology program.

Graduation Requirements

Students enrolled in the DAP must follow the COD catalog to satisfy requirements for the Associate’s Degree and the requirements set out in the IIT Undergraduate Bulletin in effect at the time of admission into the DAP for the Baccalaureate Degree.
Scholarship Opportunities

Psychology students have access to a wide range of scholarships. One program—the David J. Vitale Scholarship—is earmarked only for undergraduate psychology students. Recipients typically receive $2,000-$5,000 per year. This award is only applicable to a student’s first four years of study at IIT.

Certificate in Industrial Training

This certificate is designed to help either the experienced skilled worker or a technically educated person to learn methods of knowledge delivery in industrial training settings.

Admission Requirements
Qualified participants must be high school graduates and meet the minimum admission requirements for enrollment at IIT. Students should either have multiple years of work experience or have junior or higher status in a four-year program at IIT. Some basic psychology background would be helpful to the student, but this is not a requirement.

Program of Study
The American Society of Training and Development has a certificate with topics and courses similar to this certificate program. We ensure that our students will receive training on par with ASTD specifications. An introductory Psychology course or basic knowledge of the field is recommended for this program.

PSYC 301 Industrial Psychology
PSYC 455 Development of Evaluation of Training in Organizations
PSYC 489 Undergraduate Psychology Seminar

Minors

Minors consist of at least five courses (minimum 15 semester hours) and are optional and frequently cross-disciplinary. Since they provide a coherent set of ideas, concepts and educational experiences in a variety of areas, students may find that they enhance potential for professional development. Students who wish to pursue a minor must consult with advisors in their respective major departments.

Minors offered through the Institute of Psychology are:

Human Resources: PSYC 221, PSYC 301, PSYC 310, PSYC 431, PSYC 455, PSYC 481, PSYC 482 or 483, PSYC 497.

Organizational Psychology: PSYC 221, PSYC 301, PSYC 303, PSYC 310 or SOC 201, PSYC 409.

Psychology: At least 15 credit hours must be completed, including the following two required courses: PSYC 203, PSYC 221.

Rehabilitation Services: PSYC 410, PSYC 411, PSYC 412, PSYC 583, PSYC 590.
The mission of Air Force Reserve Officer Training Corps (AFROTC) is to produce leaders for the Air Force and build better citizens for America. Its vision is to be “a highly successful organization, respected throughout the Air Force, the educational community and the nation.” Students who become cadets have the opportunity to earn a commission in the United States Air Force while earning their baccalaureate degrees. Most graduates who enter the Air Force through this program are assigned to positions consistent with their academic majors. Highly qualified, interested graduates may compete for selection as pilots or navigators.

Air Force ROTC students gain an understanding of air and space fundamental concepts and principles, and a basic understanding of associated professional knowledge. Students develop a strong sense of personal integrity, honor, and individual responsibility, and an appreciation of the requirements for national security.

Faculty

Chair
Lt. Col. Mark R. Benz
208 Stuart Building
312.567.3526

Professor
Benz

Assistant Professors
Acosta, Hunt, Morgan

Financial Aid

The Air Force ROTC College Scholarship Program (CSP) offers four- and three-year scholarships for highly qualified high school graduates interested in an Air Force career. Additionally, the In-College Scholarship Program (ICSP) offers a variety of scholarships to qualified students already enrolled in college. Interested students can learn more about scholarship opportunities at the Air Force ROTC website, www.afrotc.com or may contact Detachment 195 at 312-567-3525.

Courses

The General Military Course (AS 101, 102, 201, 202) examines the role of U.S. Military forces in the contemporary world, with particular attention to the United States Air Force and its organization and mission.

The Professional Officer Course (AS 301, 302, 401, 402) provides an examination of the broad range of U.S. civil-military relations, the environmental context in which U.S. defense policy is formulated and implemented, and the principles and practices of leadership as they relate to the U.S. Air Force.

Leadership Laboratory is mandatory for each course and complements the program by providing fellowship and leadership experiences.

A student may take General Military Courses without entering the AFROTC program.

Minors

Students may select a minor in Air Force aerospace studies. For course requirements, see pages 156–158.
Four-Year Program

The four-year program consists of a two-year General Military Course (GMC) and a two-year Professional Officer Course (POC). Students normally start this program in their freshman year. Qualified students with previous service or at least three years Air Force JROTC may start as sophomores and enroll directly in the AS 200 course. Any student who is not on an AFROTC scholarship may withdraw from the GMC at any time. Students selected for POC must complete an AFROTC sponsored four-week field training encampment at an Air Force Base before being awarded POC status and stipends (pay). This requirement is normally fulfilled the summer after completing the sophomore year and before beginning the junior year. Not meeting this requirement does not prevent students from enrolling in the AS 300 course, but rather postpones award of POC privileges and pay until field training is accomplished. The major areas of study during field training include junior officer training, career orientation, base functions, and the Air Force environment.

Two-Year Program

This program is designed for undergraduate and graduate students in qualified majors with fewer than three, but at least two, years of coursework remaining towards their degree. Completion of this program requires a five-week summer field training encampment and the two-year POC. The five-week field training session is normally and preferably the summer prior to the start of the senior year (or first semester of the POC), but may be completed the following summer. Not meeting this requirement does not prevent students from enrolling in the AS 300 course, but rather postpones award of POC privileges and pay until field training is accomplished. The major areas of study for the five-week encampment are the same as the four-week encampment with the addition of the GMC curriculum. Interested students should contact the Air Force ROTC Detachment 195 at 312-567-3525 as soon as possible during the fall term of their sophomore year.

ROTC Air Force Aerospace Studies Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 101</td>
<td>1</td>
<td>AS 102</td>
<td>1</td>
</tr>
<tr>
<td>Total Hours</td>
<td>1</td>
<td>Total Hours</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 201</td>
<td>1</td>
<td>AS 202</td>
<td>1</td>
</tr>
<tr>
<td>Total Hours</td>
<td>1</td>
<td>Total Hours</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 301</td>
<td>3</td>
<td>AS 302</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 401</td>
<td>3</td>
<td>AS 402</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 16

* GMC courses AS 101, 102, 201 and 202 academic curricula are included in the two-year program’s five-week field training.
The principal objective of the college-level Reserve Officer’s Training Corps (ROTC) program is to develop commissioned officers for the Active Army, the Army National Guard, and U.S. Army Reserve. Each course is designed to develop essential qualities and traits of leadership required for success in either a civilian or a military career.

Instruction is offered through either a four-year or two-year program. The four-year program consists of the Basic Course (freshman and sophomore years) and the Advanced Course (junior and senior years). The two-year Advanced Course is open to students eligible for advanced placement through a variety of options. Both programs include attendance at Camp Adventure (a six-week advanced summer camp) just prior to commissioning.

Faculty

Chair
LTC Jeffrey C. Collins
University of Illinois at Chicago
312.413.9422

IIT Program Director
CSM Mark Bowman
404 FA
312.808.7140

Professor
Collins

Assistant Professor
Bowman
Basic Course

The Basic Course is an introduction to military science and carries no military obligation. Completion is a prerequisite to enrollment in the Advanced Course. Prior service, completion of basic combat training through the National Guard or Reserve, or completion of Camp Challenge may be substituted for the Basic Course.

Leadership Development Assessment Course (LDAC)

All cadets who successfully complete the Basic Course, meet the physical and academic requirements, and pass an officer-qualification test and a physical examination are eligible for selection by the professor of military science for the Leadership Development Assessment Course (LDAC). A tax-free subsistence allowance of $450-$500 per month is paid to each cadet in this advanced course except during attendance at summer camp, when pay is approximately $200 per week. Upon graduation and successful completion of the LDAC and the Professional Military Education Requirements (PMEs), cadets are commissioned as second lieutenants in the Active Army, the Army Reserve or the National Guard.

Leadership Training Course (LTC)

Cadets are paid approximately $800 during this course. Travel to and from this course is at government expense. Meals, housing, medical care, uniforms, and equipment are furnished.

Professional Military Education Requirements (PMEs)

In order to receive a well-rounded education, cadets are required to complete courses in the following areas: advanced written communications, human behavior, military history, computer literacy, and math reasoning.

Simultaneous Membership Program (SMP)

Membership in the Army National Guard or United States Army Reserve offers cadets additional experience as officer trainees, and these individuals will receive both the ROTC stipend and drill pay as an E-5. They may also receive additional money while attending school through the Montgomery GI Bill and/or USAR Kickers.

Financial Assistance

In addition to a monthly stipend of $450-$500 as an advance-course cadet, the program offers two-, three- and four-year federal Army ROTC scholarships for full tuition to qualified students. IIT offers an excellent incentive package to scholarship winners. For further information, students should call 312-808-7140 or visit the Department of Military Science in 402 Farr Hall.
ROTC: Military Science Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 101 Foundations of Officership</td>
<td>1</td>
<td>MILS 102 Basic Leadership</td>
<td>1</td>
</tr>
<tr>
<td>MILS 147 Aerobic Conditioning*</td>
<td>2</td>
<td>MILS 148 Aerobic Conditioning*</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 201 Individual Leadership Studies</td>
<td>2</td>
<td>MILS 202 Leadership and Teamwork</td>
<td>2</td>
</tr>
<tr>
<td>MILS 247 Aerobic Conditioning*</td>
<td>2</td>
<td>MILS 248 Aerobic Conditioning*</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>4</td>
<td>Total Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 301 Leadership and Problem Solving</td>
<td>3</td>
<td>MILS 302 Leadership and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>MILS 347 Aerobic Conditioning**</td>
<td>2</td>
<td>MILS 348 Aerobic Conditioning**</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>5</td>
<td>Total Hours</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILS 401 Leadership and Management</td>
<td>3</td>
<td>MILS 402 Officership</td>
<td>3</td>
</tr>
<tr>
<td>MILS 447 Aerobic Conditioning**</td>
<td>2</td>
<td>MILS 448 Aerobic Conditioning**</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>5</td>
<td>Total Hours</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Credit Hours 34

* MILS 147, 148, 247 and 248 (Aerobic Conditioning) are required for all scholarship cadets in the Basic Program.

** MILS 347, 348, 447 and 448 (Aerobic Conditioning) are required for all Advanced Course cadets.
ROTC: Naval Science

Department Web site: http://nrotc.iit.edu/

The Naval Reserve Officers Training Corps (NROTC) offers an opportunity for young men and women to qualify for a commission in the U.S. Navy or U.S. Marine Corps while attending college. While pursuing their academic studies, midshipmen of the NROTC receive a professional education and the necessary specialized training to qualify them to become commissioned Navy or Marine Corps officers.

As commissioned officers in the United States Navy, graduates may serve in one of the various components of the U.S. Fleet, such as surface ships, the aviation community, or nuclear-powered submarines. Of particular interest is the opportunity to serve as an operating engineering aboard a nuclear or conventionally powered ship. The theoretical knowledge obtained at IIT is combined with practical knowledge and early responsibility in the operation and management of the latest in missile, aircraft, and high-performance ship propulsion systems.

Students may request the option to become officers in the U.S. Marine Corps. A commission in the Marine Corps may lead to a specialization in aviation, infantry, engineering, armor, communications, or supply.

Faculty

Chair
CAPT James Otis, USN
217 Stuart Building
312.567.3527

Professor
Otis

Assistant Professors
Castle, Clark, Komnick, Larsen

ROTC: Naval Science Undergraduate Study

The Illinois Institute of Technology Naval Reserve Officers Training Corps (NROTC) Unit was established in 1946 by congressional authorization to create a naval science department. The professor of naval science (PNS) chairs Illinois Institute of Technology’s Department of Naval Science. Department faculty members are commissioned officers serving on active duty in the United States Navy or Marine Corps. They are selected and nominated by their respective services and screened and approved by the University.

The unit is located at:

10 W. 31st St.
Rm 215
Chicago, IL 60616.

Naval ROTC Programs

The Naval Reserve Officers Training Corps offers young men and women the opportunity to obtain leadership and management experience as commissioned officers in the United States Navy (Navy option) or Marine Corps (Marine Corps after graduation from Illinois Institute of Technology, through either the Scholarship Program or the non-scholarship College Program.

At Illinois Institute of Technology, NROTC midshipmen lead essentially the same campus life as other students. They participate in campus activities of their choice and can participate in work study programs including University-sponsored overseas study.

There are no prescribed academic majors for NROTC students, although scientific and technical studies are encouraged. NROTC students are required to complete the naval science curriculum, attend a weekly two-hour laboratory, and participate in four to six weeks of active duty for summer training at sea or ashore. College Program students attend training during the summer preceding their last academic year. Between their third and fourth years, Marine Corps NROTC students will attend a summer training program at the Marine Corps development and Education Command in Quantico, VA.
ROTC: Naval Science

Scholarship Program

NROTC scholarship students are selected by nationwide competition. The NROTC Scholarship pays for tuition, books and fees, as well as providing a tax-free stipend each month for four years. Graduates are commissioned as naval or marine corps officers and incur a minimum obligation of four years of active duty service.

College Program

Admission to the College Program is controlled by the Professor of Naval Science. Students incur no obligation to the naval services for participation in this program until their junior year. Qualified students enrolled in this program may be recommended for scholarships by the Professor of Naval Science. In addition to uniforms and some naval science books issued to students enrolled in this program, the Navy provides a tax-free stipend each month during the junior and senior years. Graduates are commissioned as Reserve naval officers and incur a minimum obligation of three years of active duty.

Two-Year Programs

The Navy/Marine Corps offer two two-year programs; one of these is a Scholarship Program and the other is a two-year College Program. Students are selected before April 1 of their sophomore year and attend a six-week Naval Science Institute Course at Newport, RI in the summer before entering their junior year. Scholarship benefits for the junior and senior year are identical to those received by students in the four-year scholarship program during their junior and senior years.

Academic Requirements

Scholarship Program students are encouraged to pursue majors in engineering and applied sciences to meet the technological demands of the modern Navy. Most other fields of study leading to a baccalaureate degree are permitted with the approval of the Professor of Naval Science. All Navy option scholarship program students are required to complete one year each of calculus and physics.

College Program students and students enrolled in the Marine Corps option are encouraged to take courses in calculus and physics or to pursue a science or engineering major. In addition to the prescribed naval professional academic courses, the naval faculty conducts laboratories all four academic years to give students experience in practical leadership.

All scholarship students are required to complete a course in American Military Affairs or National Security Policy. Naval science courses are not offered on a pass-fail basis.

Optional Program

Students may select a minor in naval science. Course requirements are shown on the next page.
ROTC: Naval Science Curriculum

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS 101 Introduction to Naval Science</td>
<td>2</td>
<td>NS 202 Seapower and Maritime Affairs</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>2</td>
<td>Total Hours</td>
<td>3</td>
</tr>
<tr>
<td>Semester 3</td>
<td>Credits</td>
<td>Semester 4</td>
<td>Credits</td>
</tr>
<tr>
<td>NS 401 Leadership and Management</td>
<td>3</td>
<td>NS 302 Navigation & Naval Operations</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>3</td>
</tr>
<tr>
<td>Semester 5</td>
<td>Credits</td>
<td>Semester 6</td>
<td>Credits</td>
</tr>
<tr>
<td>NS 102 Naval Ship Systems</td>
<td>3</td>
<td>NS 201 Naval Weapons Systems</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>3</td>
</tr>
<tr>
<td>Semester 7</td>
<td>Credits</td>
<td>Semester 8</td>
<td>Credits</td>
</tr>
<tr>
<td>NS 301 Navigation & Naval Operations</td>
<td>3</td>
<td>NS 402 Naval Leadership and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 23

Marine Option

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Credits</th>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS 101 Introduction to Naval Science</td>
<td>2</td>
<td>NS 202 Seapower and Maritime Affairs</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>2</td>
<td>Total Hours</td>
<td>3</td>
</tr>
<tr>
<td>Semester 3</td>
<td>Credits</td>
<td>Semester 4</td>
<td>Credits</td>
</tr>
<tr>
<td>NS 401 Leadership and Management</td>
<td>3</td>
<td>Total Hours</td>
<td>0</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>0</td>
</tr>
<tr>
<td>Semester 5</td>
<td>Credits</td>
<td>Semester 6</td>
<td>Credits</td>
</tr>
<tr>
<td>NS 310 Evolution of Warfare</td>
<td>3</td>
<td>Total Hours</td>
<td>0</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>0</td>
</tr>
<tr>
<td>Semester 7</td>
<td>Credits</td>
<td>Semester 8</td>
<td>Credits</td>
</tr>
<tr>
<td>NS 410 History of Amphibious Warfare</td>
<td>3</td>
<td>NS 402 Naval Leadership and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>3</td>
<td>Total Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 17
The Department of Social Sciences encompasses the disciplines of political science, sociology, anthropology, and public administration. The department offers coursework and awards degrees at both the undergraduate and graduate levels. Our faculty concentrates on a variety of subjects using an interdisciplinary approach, including: American and urban politics; organization and management; policy analysis; science, technology, and environment; urban sociology and ethnography; international migration; and sociology of architecture and design.

An undergraduate program is offered leading to a Bachelor of Science in Political Science, as well as minors in political science, sociology, public administration, and so on. The department participates with other IIT departments in offering interdisciplinary minors in legal studies, law and society, technology and human affairs, and urban studies, among others.

At the graduate level, the department offers the master's degree in public administration (M.P.A.). Degrees are offered combining several different undergraduate degrees, including political science with a master's degree in public administration. These combined degrees can usually be completed in five years. The department cooperates with the university’s law school (Chicago-Kent College of Law) in offering a program leading to a bachelor's degree and law degree in six years instead of the usual seven years.

The educational objectives of the degree program in Political Science are to provide students with knowledge of the central concepts and theories in political science and a set of practical skills preparing the student for success in either the public sector, non-profit and private sectors, graduate school, or law school.

The curriculum is designed to develop the skills necessary to identify and formulate policy, and to conduct the analysis necessary to devise solutions. Specific skills emphasized include written and oral communication, modeling, statistical, and other forms of analysis. Most students majoring in political science focus their study on American government, urban affairs, administrative and organization theory, public policy, or interdisciplinary approaches.

Basic courses in the social sciences have the objective of providing both majors and non-majors with an understanding of local and global issues. Specialized courses in the policy areas have the objective of offering both majors and non-majors the opportunity to pursue a variety of social science subjects at advanced levels.

Faculty

Chair
Patrick R. Ireland
Room 116 Siegel Hall
312.567.5211

Associate Chair
Christina Nippert-Eng
Room 116 Siegel Hall
312.567.6812

Professors
Grimshaw, Ireland, Segerstrale

Associate Professors
DeForest, Nippert-Eng

Assistant Professor
Shapiro

Visiting Assistant Professors
Calia, Schalliol

Senior Lecturers
Bonaccorsi, Nollenberger, S. Peters

Adjunct Professors
(UG) Rice, Watson
(MPA) Bratkovic, Brest van Kempen, Disselhorst, Ehrlich, Kuner, Lipinski, Marcus, Markle, McCulloch, G. Peters, Phillips, Pournian, Trygstad

Faculty Emeritus
Beam
Political Science

Political science emphasizes making connections between the theory and practice of politics. Concerns range from perennial philosophical issues regarding justice, equality, and freedom to practical political matters such as conflict resolution, collective decision making, and public policy. Opportunities are provided to consider how theoretical understandings of politics can inform political action and how participation in politics offers the basis for understanding it.

Since the ancient Greeks, knowledge of the affairs of state has always been deemed essential for all educated citizens. A knowledge of political science is central to any occupation or profession that requires an understanding of human behavior and the relations between people and governments or the analysis and communication of information about public problems. A background in political science is virtually indispensable to people in politics and government, whether at the global, national, state, or local level.

A political science undergraduate degree is common for the following types of professionals: lawyers, journalists, policy analysts, planners, scientists, business managers, politicians, and medical personnel. Such professionals are in constant need of information on and understanding of the political, legal, governmental, and social implications of their fields.

Students seeking a major in political science are required to complete 33 credits in political science. With departmental approval, up to 18 hours of coursework in related fields may be applied toward this requirement. Majors are also required to complete an approved course in statistics and a course in research methods and may also be compelled to take a course necessitating completion of a research paper. Students seeking a minor in political science must complete 15 credits in political science. Additional courses may be required to prepare students for professional training and for entrance into their chosen professional field, such as law or medicine.

The political science curriculum consists of 126 semester hours, which are distributed as follows: at least 33 hours in political science (including 5 required core courses); a minor of at least 15 hours; up to 29 hours of free electives; and completion of the general education program (three hours of Introduction to the Profession; six hours of Interprofessional Projects; five hours of mathematics, including PSYC 203; two hours of computer science; 21 hours of humanities and social sciences; and 11 hours of natural science or engineering). Students should consult their academic advisor regarding course sequences.

Sociology

Sociology may be defined as the study of societies, communities, organizations, and groups. It examines the structure and process of society and of the social groups that compose it. The focus is often on how people coordinate their activities to reach individual and collective goals in a wide range of settings, including workplace, educational, religious, familial, and political settings.

Sociological analysis explores social situations from the standpoint of the roles, meanings, and norms that make behavior predictable and organized. It investigates how such patterns of independent activity arise and sustain them; why they take one shape instead of another; how some change more rapidly than others; how they are related to each other; and how people justify and explain their organizations and activities. Thus the field provides an understanding of the crucial problems facing our rapidly changing society.

Sociology provides intellectual and research skills, as well as a body of concepts and information useful to those entering numerous professions, including architecture, engineering, design, government, planning, social work, law, and medicine. Students completing a minor in sociology are required to take five three-hour courses in the discipline.

Public Administration

Public administration emphasizes public and non-profit management, policy analysis, and financial management of governmental organizations. Public administration courses are generally offered only at the graduate level but are generally open to qualified undergraduate students. A joint-degree program leading to a combined B.S./M.P.A. Degree program is offered for students interested in government careers.
Bachelor of Science in Political Science

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics Requirements</td>
<td>6</td>
</tr>
<tr>
<td>Two courses of MATH 119 or above including PSYC 203 or BUS 221</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences Requirements</td>
<td>21</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Natural Sciences Requirements</td>
<td>11</td>
</tr>
<tr>
<td>For general education requirements, see page 27.</td>
<td></td>
</tr>
<tr>
<td>Computer Science Requirement</td>
<td>2</td>
</tr>
<tr>
<td>CS 105</td>
<td></td>
</tr>
<tr>
<td>Political Science Requirements</td>
<td>15</td>
</tr>
<tr>
<td>PS 100*, PS 200, PS/SOC 209, PS 273 or PS/SOC 210, PS 230 or PS 232</td>
<td></td>
</tr>
<tr>
<td>Political Science Specialization</td>
<td>21</td>
</tr>
<tr>
<td>Students may select only one specialization</td>
<td></td>
</tr>
<tr>
<td>Required Minor Electives</td>
<td>15</td>
</tr>
<tr>
<td>Free Electives</td>
<td>29</td>
</tr>
<tr>
<td>Interprofessional Projects</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Hours 126

* Students may substitute PS 202, SOC 200, or SOC 203.
Political Science Curriculum

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>PS 100 Introduction to the Profession*</td>
<td>3</td>
</tr>
<tr>
<td>PS 200 American Government</td>
<td>3</td>
</tr>
<tr>
<td>Humanities 100-level Elective</td>
<td>3</td>
</tr>
<tr>
<td>Math Elective above MATH 119</td>
<td>3</td>
</tr>
<tr>
<td>Natural Science or Engineering Elective</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 105 Intro to Computer Programming I</td>
<td>2</td>
</tr>
<tr>
<td>PS 230 International Relations</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>PS 232 Introduction to Comparative Politics</td>
<td>4</td>
</tr>
<tr>
<td>Natural Science or Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 3</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 205 Undergrad Stats for Behavioral Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Political Science Specialization</td>
<td>3</td>
</tr>
<tr>
<td>Political Science Specialization</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO 497 Interprofessional Project</td>
<td>3</td>
</tr>
<tr>
<td>PS 209 Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>IPRO 497 Interprofessional Project</td>
<td>3</td>
</tr>
<tr>
<td>Political Science Specialization</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 273 Great Political Thinkers</td>
<td>3</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>PS 210 Social & Political Thought</td>
<td>3</td>
</tr>
<tr>
<td>Minor Course Elective</td>
<td>3</td>
</tr>
<tr>
<td>Political Science Specialization</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>2</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Course Elective</td>
<td>3</td>
</tr>
<tr>
<td>Political Science Specialization</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective (300+)</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPRO 497 Interprofessional Project</td>
<td>3</td>
</tr>
<tr>
<td>Minor Course Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Political Science Specialization</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Course Elective</td>
<td>3</td>
</tr>
<tr>
<td>Political Science Specialization</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours 126

* Students may substitute PS 202, SOC 200, or SOC 203.
Social Sciences

Specialization Requirements

Specialization 1: Urban Affairs

Students must take the following courses:

- PS 315 Urban Politics
- PS/SOC 403 Issues in Urban Affairs

In addition, four courses must be chosen from the following courses:

- CRP 425 History and Architecture of Cities
- HIST 350 U.S. Urban History
- HIST 352 History of Chicago
- PA 555 Introduction to Urban and Regional Planning
- PA 562 Urban and Metropolitan Government
- PA 563 Intergovernmental Relations
- PS 317 Chicago Politics
- PS 341 School Politics
- PS 351 Public Administration
- PS 385 Urban Planning and Policy
- PS 420 Comparative Urban Politics
- PS/SOC 320 Urban Institutions
- PS/SOC 354 Urban Policy
- SOC 311 Social Use of Space
- SOC 342 Industrial Society
- SOC 350 Urban Sociology
- SOC 352 Sociology of Education

Specialization 2: Policy Analysis/Technology

Students must take the following courses:

- PS 306 Politics and Public Policy
- PS 408 Methods of Policy Analysis

In addition, four courses must be chosen from the following courses:

- PA 513 Public Policy Analysis and Evaluation
- PA 537 Homeland Security and Crisis Management
- PA 552 Health and Human Services Policy and Admin
- PA 577 Tools of Government
- PS 303 Politics and Media
- PS 316 Political Parties and Election Process
- PS 318 Contemporary Constitutional Issues
- PS 333 Politics of National Security
- PS 334 Post-Colonial Politics
- PS 335 Issues in U.S. Space Policy
- PS 338 Energy and Environmental Policy
- PS 345 American Presidency
- PS 346 American Politics Since 1945
- PS 351 Public Administration
- PS 356 Law in American Society
- PS 365 Introduction to Legal Analysis
- PS 373 Politics of East Asia
- PS 374 Politics of Europe
- PS 375 Politics of Latin America
- PS 376 Politics of Migration
- PS 420 Comparative Urban Politics
- PS 425 Rhetoric and Narrative in Legal Analysis
- PS 438 Energy and Environmental Policy
- PS 452 Bureaucratic Politics
- PS 453 U.S. Regulatory Politics and Policy
- PS/SOC 323 Problems of Multi-Ethnic and Religious States
- PS/SOC 328 Vietnam War
- PS/SOC 354 Urban Policy

Specialization 3: American and Comparative Policies

Students must take the following courses:

- PS 306 Politics and Public Policy
- PS 462 Issues in American Politics (Seminar)

In addition, four courses must be chosen from the following courses:

- PA 503 Administrative Law
- PA 513 Public Policy Analysis and Evaluation
- PA 537 Homeland Security and Crisis Management
- PA 552 Health and Human Services Policy and Admin
- PA 577 Tools of Government
- PA 232 Introduction to Comparative Politics
- PS 303 Politics and Media
- PS 316 Political Parties and Election Process
- PS 318 Contemporary Constitutional Issues
- PS 333 Politics of National Security
- PS 334 Post-Colonial Politics
- PS 335 Issues in U.S. Space Policy
- PS 338 Energy and Environmental Policy
- PS 345 American Presidency
- PS 346 American Politics Since 1945
- PS 351 Public Administration
- PS 356 Law in American Society
- PS 365 Introduction to Legal Analysis
- PS 373 Politics of East Asia
- PS 374 Politics of Europe
- PS 375 Politics of Latin America
- PS 376 Politics of Migration
- PS 420 Comparative Urban Politics
- PS 425 Rhetoric and Narrative in Legal Analysis
- PS 438 Energy and Environmental Policy
- PS 452 Bureaucratic Politics
- PS 453 U.S. Regulatory Politics and Policy
- PS/SOC 323 Problems of Multi-Ethnic and Religious States
- PS/SOC 328 Vietnam War
- PS/SOC 354 Urban Policy

Specialization 4: Society, Politics, and Values

Students must take the following courses:

- SOC 301 The Social Dimension of Science
- PS/SOC 405 Power, Domination, and Resistance

In addition, four courses must be chosen from the following courses:

- PS 273 Great Political Thinkers
- PS 346 American Politics Since 1945
- PS 401 Terrorism, Security, and Civil Liberties
- PS/SOC 210 Social and Political Thought
- PS/SOC 321 Social Inequality
PS/SOC 340 Social Organization and Control
PS/SOC 361 Theories of Capitalism
PS/SOC 362 Technology and Social Change
PS/SOC 442 Race and Ethnicity in Intl Perspective
SOC 203 Further Explorations of Sociological Concepts
SOC 302 Science and Beliefs
SOC 303 Science in Society
SOC 308 Social Psychology and Society
SOC 312 Contemporary Social Problems
SOC 337 Social Scientific Imagination
SOC 348 Deviant Behavior and Conformity
SOC 351 Sociology of Work
SOC 356 Transformative Technologies
SOC 359 Humans, Ecology, and the Environment
SOC 363 Fate of Societies
SOC 425 Privacy
SOC 431 Development of Sociological Thought
SOC 450 Human Nature
SOC 454 Gender and Work Through Film: Ethnography

Specialization 5: Interdisciplinary Approaches to Science and Technology Studies

Students must take the following courses:

SOC 200 Introduction to Sociology
OR
SOC 203 Engaging Sociology
OR
PS 100 Introduction to the Profession

SOC 202 Introduction to Political Science
PS/SOC 209 Research Methods
PS 360 Globalization: Global Political Economy
SOC 362 Technology and Social Change

In addition, students must choose two of the following courses:

SOC 303 Science in Sociology
PS 332 Politics of Science and Technology
ANTH 300 Anthropology of Technology
HIST 383 Technology in History: 1850-Present

Finally, students must choose 4 additional courses from one of the following clusters:

Public Policy
PA 537 Homeland Security and Crisis Management
PA 552 Health and Human Services Policy and Admin
PA 554 Administration of Science and Technology
PA 564 Comparative Administration and Policy
PA 577 Economic Development

Work and Labor Markets
PSYCH 301 Industrial Psychology
SOC 340 Social Organization and Control
SOC 342 Industrial Society
SOC 351 Sociology of Work
SOC 371 Occupations and Professions
SOC 420 Managers and Management
SOC 425 Privacy
SOC 454 Gender and Work through Film: Ethnography

Interdisciplinary Approaches
HIST 340 Rise of Global Economy
HIST 382 Technology in History: 1500-1850
HIST 383 Technology in History: 1850-present
HIST 384 Science in the Twentieth Century
PHIL 350 Science and Method
PHIL 351 Science and Values
PS 332 Politics of Science and Technology
PSYCH 310 Social Psychology

Specialization 6: Customized

Students must take six courses in Political Science or Sociology at the 300 and 400 level chosen in consultation with advisor and including at least one seminar.

IIT Undergraduate Bulletin 2008–2010
153
Minors

Minors consist of at least five courses (minimum 15 semester hours) and are optional and frequently cross-disciplinary. Since they provide a coherent set of ideas, concepts and educational experiences in a variety of areas, students may find that they enhance potential for professional development. Students who wish to pursue a minor must consult with advisors in their respective major departments. Courses used to satisfy general education or major requirements do not apply to a minor. Exceptions may be made in individual cases.

NOTE: Not all minors are applicable to all majors.

Following are approved minors:

Aerospace Engineering (ME majors only): MMAE 311, MMAE 312, MMAE 436, MMAE 441, MMAE 443, MMAE 452.

Air Force Aerospace Studies: AS 101, AS 102, AS 201, AS 202, AS 301, AS 302, AS 401, AS 402. Attendance at a five-week field training camp may be substituted for AS 101, AS 102, AS 201 and AS 202.

Applied Mathematics: MATH 230, MATH 252, MATH 332, and at least two courses in mathematics at the 400 level.

Architecture (non-architecture majors only): This minor consists of 7 semester hours. ARCH 100, ARCH 109, ARCH 113, either AAH 119 or AAH 120, and one of the following courses: ARCH 114, ARCH 125, ARCH 321, ARCH 403, and ARCH 413. Those students preparing for competitive application to graduate programs in architecture are encouraged to select ARCH 114.

Artificial Intelligence: CS 201, CS 330, CS 331, CS 430, CS 480.

Biochemistry: BIOL 214, BIOL 401, BIOL 402, BIOL 404, BIOL 445.

Biology: BIOL 107, BIOL 109, BIOL 115, BIOL 117, BIOL 210, BIOL 214, BIOL 495.

Business: BUS 210 or (BUS 211 and 212), ECON 211 or (ECON 151 and 152), BUS 301 and two of the following three courses: ECON 423, BUS 371 and BUS 305. Chemical engineering majors should also take CHE 426 or another engineering science course.

Chemistry: At least 15 credit hours must be completed from the following courses: CHEM 247; one of the sequences: CHEM 237 and 239 or CHEM 343 and 344; and electives chosen from: CHEM 321, CHEM 334, CHEM 335, CHEM 455.

Circuits and Systems (non-EE, non-CPE majors only): ECE 211, ECE 213, ECE 218, and one of the following sequences: ECE 308 and ECE 403, ECE 308 and ECE 438, or ECE 319 and ECE 420.

Communication: 15 credit hours of communication coursework, at least (9) nine of which must be at or above the 300 level, chosen in consultation with the minor advisor.

Computational Structures: CS 201, CS 330, CS 331, CS 430, MATH 471.

Computer Architecture: CS 201, ECE 218, CS 331, CS 350, CS 470.

Computer Networking: CS 201, CS 331, CS 350, CS 450, CS 455.

Construction Management: CAE 470, CAE 471, CAE 472, CAE 473, ECON 423.

Database Management: CS 201, CS 331, CS 425, CS 445 and one of the following courses: CS 422 or CS 429.

Electromechanical Design and Manufacturing (AE and ME majors only):
- **AE majors:** MMAE 445, MMAE 485, BUS 305, ECE 218, ECE 242, ECE 441 (replaces PHYS 300).
- **ME majors:** MMAE 444, MMAE 485, BUS 305, ECE 218, ECE 242, ECE 441 (replaces PHYS 300).

Energy/Environment/Economics (E3): This minor consists of 15 semester hours. CHE 543,
- six credit hours from the following courses: CHE 465, CHE 467, CHE 481, CHE 483, CHE 489, CHE 491, CHE 517, CHE 520, CHE 522, CHE 541, CHE 565, CHE 582, ECE 319, ECE 411, ECE 419, ECE 420, ECE 438, MMAE 423, MMAE 424, MMAE 425.

AND
- six credit hours from the following courses: ENVE 426, ENVE 404, ENVE 463, ENVE 485, ECE 491, ECE 497, MMAE 491, MMAE 494, MMAE 497, ECON 423, PS 338. Appropriate substitution may be made with the approval of the program advisor.

Engineering Graphics and CAD: EG 105, EG 305, EG 306, EG 405, EG 406, EG 419.

English Language/Literature: 6 credit hours of English linguistics courses, 6 credit hours of Literature courses, and a 3 credit hour course in either English linguistics or literature. At least nine credit hours must be at or above the 300 level.
Environmental Engineering: This minor consists of 15 semester hours.

- Chemical Engineering: At least six credit hours from the following courses: CHE 426, ENVE 404, ENVE 463, ENVE 485, ENVE 491.

- Civil Engineering: Six credit hours from the following courses: CAE 421, CAE 482, CAE 483, CAE 484.

Appropriate substitution may be made with the approval of the program advisor.

Entrepreneurship: BUS 210, BUS 361, BUS 371, two entrepreneurial IPROs (EnPROs), and one of the following courses: BUS 363, ECON 211, or ECON 423.

Graphics and CAD for Non-Engineers: EG 225, EG 325, EG 329, EG 425, EG 429.

Health Care and American Society: SOC 201, SOC 301, SOC 348, PS 332, and PS 351.

History: At least 15 credit hours of history courses numbered 300 level or above must be completed. These courses should be chosen in consultation with minor advisor.

Human Resources: PSYC 221, PSYC 301, PSYC 310, PSYC 431, PSYC 455, PSYC 481, PSYC 482 or 483, PSYC 497.

Information System Administration: ITM 301, ITM 302, ITM 440, and six credit hours from the following courses: ITM 451, ITM 452, ITM 454, ITM 456.

Information System Network Management: ITM 440, ITM 441, ITM 448, ITM 471, and one of the following courses: ITM 456, ITM 461.

Information Technology and Management: ITM 301, ITM 302, ITM 421, ITM 440, ITM 471.

Internet Application Development: ITM 311, ITM 411, ITM 461, ITM 462, and one of the following courses: ITM 463, ITM 465, ITM 466, or an applicable COM course (with advisor approval).

Law and Society: At least 15 credit hours must be completed, including the following: PS 256, PS 318, SOC 348, PHIL 362, PS 425.

Linguistics: 15 credit hours of linguistics coursework, at least (9) nine of which must be at or above the 300 level, chosen in consultation with the minor advisor.

Literature: At least 15 credit hours in 300 level literature courses must be completed.

Philosophy and Sociology of Science: At least 15 credit hours must be completed, including PHIL 341, and at least four of the following courses: PHIL 302, PHIL 326, PHIL 342, PHIL 343, PHIL 350, SOC 301, SOC 302, SOC 303.

Management: see Business minor.

Materials Engineering:

- ME majors: MMAE 365, MMAE 370 and three of the following courses: MMAE 463, MMAE 465, MMAE 468 (or MMAE 476), MMAE 482, MMAE 483, MMAE 484, MMAE 486, MMAE 487, or an approved IPRO.

- AE majors: MMAE 365, MMAE 370, MMAE 485 and two of the following courses: MMAE 463, MMAE 465, MMAE 468, MMAE 482, MMAE 483, MMAE 484, MMAE 486, MMAE 487, or an approved IPRO.

Mechanical Engineering (AE majors only): MMAE 406, MMAE 432, MMAE 433, MMAE 443, MMAE 485.

Military Science: MILS 101, MILS 102, MILS 201, MILS 107 or MILS 202 (these courses will at times be interchanged) or attendance at military training; MILS 301, MILS 302, MILS 401, MILS 402.

Naval Science: NS 101, NS 102 (navy option), NS 201 (navy option), NS 202 (attendance at the Naval Science Institute may be substituted for the preceding courses), NS 301 (navy option), NS 302 (navy option), NS 310 (marine option), NS 401, NS 402, NS 410 (marine option).

Music: 15 credits in music theory or practice taken at VanderCook College of Music. A maximum of three semester hours of performance courses may be used towards a minor. Students should contact Educational Services concerning applicability of courses toward graduation.

Operating Systems: CS 201, CS 331, CS 350, CS 351, CS 450.

Organizational Psychology: PSYC 221, PSYC 301, PSYC 303, PSYC 310 or SOC 201, PSYC 409.

Philosophy: At least 15 credit hours of philosophy courses numbered 300 level or above.

Physics: PHYS 300 or PHYS 427, PHYS 308, PHYS 348, PHYS 405, PHYS 413.

Political Science: PS 201, PS 209, PS 200 or PS 230 or PS 231, and 6 hours in political science electives at the 300 level or above. Courses from one Political Science specialization (see 152) are recommended.
Minors

Polymer Science and Engineering: This minor consists of 15 semester hours.
- One course from the following: CHE 470, CHEM 470, MMAE 470.
- At least three courses from the following: CHE 538, CHE 555, CHE 575, CHE 581, CHEM 535, CHEM 537, CHEM 542, MAAE 483, MAAE 487, MAAE 579, MAAE 580, MAAE 581.
- Up to one course from the following: CHE 426, CHE 489, CHE 491, CHE 582, FPE 541, MAAE 451, MAAE 485.
Appropriate substitution may be made with the approval of the program advisor.

Premedical Studies: This specialized minor is intended for those students who plan to apply to a medical school, and have been approved by the Premedical Advisory Committee. Note: Students who major in biology or molecular biochemistry and biophysics satisfy the premedical studies course requirements.
- Biomedical Engineering:
 - Neural Engineering or Medical Imaging Track: CHEM 237, CHEM 239, CHEM 240 and at least six credit hours chosen from the following: BIOL 210, BIOL 214, BIOL 225, BIOL 401, BIOL 402, BIOL 404, BIOL 445, BIOL 446, BME 491 (1-3 credit hours), BME 495 (1-3 credit hours). If CHEM 237 or 239 is taken as an option then add equivalent number of credit hours from courses listed above.
 - Cell and Tissue Track: CHEM 240, and at least 13 credit hours chosen from the following: BIOL 210, BIOL 214, BIOL 225, BIOL 401, BIOL 402, BIOL 404, BIOL 445, BIOL 446, BME 491 (1-3 credit hours), BME 495 (1-3 credit hours).
- Chemical Engineering: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 240, CHE 426 or one three-credit engineering science course.
- Chemistry: Students interested in pursuing chemistry as a premedical degree can elect the Bachelor of Science in Chemistry with emphasis in Biological Chemistry optional degree program which includes all of the necessary courses for entrance into medical school. Alternatively, students can pursue any of the other optional degree programs in chemistry but must take the following additional courses to be awarded the premedical minor: BIOL 107, BIOL 109, BIOL 115, BIOL 117, BIOL 214, and choose one of the following: BIOL 430 or BIOL 445.
- Electrical Engineering: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 125, CHEM 237, CHEM 239, CHEM 240.
- Mechanical Engineering: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 125, CHEM 237, CHEM 239, CHEM 240.
- Computer Science: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 124, CHEM 125, CHEM 237, CHEM 239, CHEM 240.
- Physics: BIOL 107, BIOL 109, BIOL 115, BIOL 117, CHEM 237, CHEM 239, CHEM 240.

Professional and Technical Communication: COM 421 plus 12 credit hours of communication coursework in consultation with the minor advisor.

Programming Languages: CS 201, CS 331, CS 350, CS 351, CS 440.

Psychology: At least 15 credit hours must be completed, including the following two required courses: PSYC 203, PSYC 221.

Public Administration: PS 200, PS 201, PS 351, PS 452 or PS 453, and PS 462.

Rehabilitation Services: PSYC 410, PSYC 411, PSYC 412, PSYC 583, PSYC 590.

Sociology: SOC 200, SOC 203, plus an additional 9 credit hours chosen in consultation with the departmental advisor.

Software Engineering: CS 201, CS 331, CS 441, CS 445, CS 487.

Structural Engineering (non-CAE majors only): CAE 303, CAE 304, CAE 307, CAE 310, CAE 315.

Technology and Human Affairs: At least 15 credit hours must be completed from the following: HIST 383, PHIL 370, PS 332, PS 338, PS 339, SOC 303, SOC 304, SOC 356, SOC 362.

Telecommunications: CS 116 or CS 201; ECE 403, ECE 406, ECE 407 and ECE 436; and two telecommunications electives chosen from CS 331, CS 450, ECE 448, or ECE 449.

Web Communication: COM 430, COM 431, COM 432, and two courses chosen in consultation with the minor advisor.
Special Programs

Dual Undergraduate Degree Options

Depending upon interest, capabilities, and goals, and with the permission of their advisors and department chairs, students may choose dual undergraduate degree programs or select one of the options listed below.

Bachelor of Science in Computer Engineering/Bachelor of Science in Computer Science

Students interested in this program should consult a Department of Computer Science advisor. Freshmen entering IIT with a significant number of advanced placement credits might be able to complete both degrees in four years.

Bachelor of Science in Computer Engineering/Bachelor of Science in Electrical Engineering

Students interested in this program should consult a Department of Electrical and Computer Engineering advisor. Freshmen entering IIT with a significant number of advanced placement credits may be able to complete both degrees in four years.

Bachelor of Science in Mechanical Engineering/Bachelor of Science in Aerospace Engineering/Bachelor of Science in Materials Science and Engineering

A dual major in ME and AE, ME and MSE, or AE and MSE may generally be completed in one additional semester. Interested students should consult their advisor.

Bachelor’s/Master’s Degree Options

IIT’s double-degree options allow students to earn two degrees in as few as five years. The university has created bachelor’s degree/master’s degree options in fields in demand in professions where graduate training is essential. Students may enter some undergraduate/graduate double-degree programs either through the honors track or the standard track. Through the honors track, exceptional students may be admitted simultaneously into both the undergraduate and graduate schools when they apply to IIT. Admission will be based on their high school records, including grades, test scores, faculty/employer recommendation, and other documentation. Through the standard track, students are admitted into the undergraduate department offering the bachelor’s portion of the program.

Depending upon their interests, capabilities and goals, and with the permission of their advisors and department chairs, students may choose combined degree programs or select one of the following options.
Special Programs

Bachelor of Architecture (B.Arch.)/Master of Business Administration (M.B.A.)

Architects recognize the importance of business skills in their profession. Recognizing the 21st century’s concerns with environmental management and sustainable design issues, IIT offers young architects a unique opportunity for advanced graduate study in the Stuart School of Business.

IIT students completing the requirements for the B.Arch. degree may also earn the M.B.A. degree by completing an approved set of courses established by their academic advisors and appropriate deans in the College of Architecture and the Stuart School of Business. Thus, qualified architecture students may earn their B.Arch. and the M.B.A. in approximately six years, rather than the usual seven years. When including a summer term, the M.B.A. will typically require one more year of study.

Students considering the B.Arch./M.B.A. dual degree program should consult their academic advisors in both programs early in their academic career. Students will be required to apply for admission to the graduate M.B.A. program, providing Graduate Management Admission Test (GMAT) score and all other necessary application materials. Professional experience in the business world is not required for consideration, allowing B.Arch. students to pursue their M.B.A. degree without interruption. Formal application should be completed prior to the end of the seventh semester of the B.Arch. program.

Bachelor of Architecture/Master of Civil Engineering

Qualified students enrolled at IIT may earn both the Bachelor of Architecture and one of two professional masters’ degrees in civil engineering. Students who seek the Master of Structural Engineering degree (MAS STE) must successfully complete the following courses as part of their undergraduate program in architecture: MATH 151, MATH 152, MATH 251, MMAE 201, MMAE 202, CAE 303, CAE 304, CAE 307, CAE 310, CAE 431, and CAE 432. Students who seek the Professional Master’s degree in Architectural Engineering should take CAE 208, 209, and 383. Students who seek the Master of Construction Engineering and Management (MAS CM) should consult the department.

Students who anticipate entering into the program should seek advising in the Department of Civil, Architectural and Environmental Engineering and the College of Architecture early in their studies at IIT.

Bachelor of Science/Master of Business Administration

One of the most appealing career preparations is the combination of a bachelor’s degree with the Master of Business Administration (M.B.A.) degree. IIT students who complete the necessary undergraduate management courses may earn both the bachelor’s degree and the M.B.A. degree in about five years, rather than the usual six years. See previous page for B.Arch./M.B.A. program. Undergraduate courses, when included as part of the bachelor’s degree program, replace graduate courses that are part of the M.B.A. program. This allows students to complete the M.B.A. with as few as 16 courses.

Students who are considering the Bachelor/M.B.A. program should consult with the Stuart School of Business undergraduate programs advisor as early as possible in their academic career in order to plan a program enabling them to receive the maximum number of advanced standing credits toward their M.B.A. Formal application to the M.B.A. program, which includes a Graduate Management Admission Test (GMAT) score, should be submitted prior to the completion of the seventh semester of the bachelor’s program.

Bachelor of Science/Master of Public Administration

Qualified students who are interested in careers in the public sector may complete their BS and Master’s Degree in Public Administration in five or fewer years.

The requirements for the Bachelor of Science concentration in Political Science and Master of Public Administration are often completed in four and a half years. Requirements for a BS degree in engineering or science can be combined with an MPA degree and usually take somewhat longer, depending on the student’s load each semester and his or her total program. Students interested in this option submit their request to the MPA program after their fourth semester. Qualified students are granted provisional admission to the program and begin taking the graduate level MPA courses, usually at the rate of one per semester. When the student has completed substantially all the requirements for the BS portion of the program, the student applies for regular admission to the graduate program. The decision about regular admission will be based on the work the student has completed at the time of his or her request for regular admission. By then, the student will have completed the MPA foundation courses. Students in this program receive credit toward their BS electives for two MPA courses and with the approval of the academic director, may receive credit toward their MPA degree for up to six hours of relevant undergraduate coursework.
Combined Undergraduate/Graduate Law Programs

(Leading to B.S./J.D. Degrees)

Students in these programs study their undergraduate program at the Main Campus of IIT and the law school portion of the program at IIT’s Chicago-Kent College of Law. Two combined undergraduate and graduate law degree programs are available.

Prelaw undergraduate students also have access to seminars, prelaw advising and assistance preparing for the LSAT.

Honors Law Program

The Honors Law Program allows students to pursue an accelerated sequence of coursework leading to the Bachelor of Science and Juris Doctor degrees. Students apply to the Honors Law Program prior to the beginning of their freshman year. Acceptance by Chicago-Kent is automatic for those students who meet the minimum program requirements. Students are guaranteed a seat in the Chicago-Kent entering class provided that they meet the following criteria:

- maintain a 3.25 cumulative undergraduate GPA
- take the Law School Admissions Test (LSAT) by February of their third undergraduate year at IIT and achieve an LSAT score at or exceeding the median score for the Chicago-Kent entering class
- submit a completed application to Chicago-Kent by April 15 of the third undergraduate year
- maintain a record consistent with the requirements of the bar examining program

Students who participate in the program but who do not meet the criteria for guaranteed admission are invited to apply through the regular competitive application process for admission to Chicago-Kent after three years of undergraduate study. In reviewing such applications, consideration will be given to the student’s participation in the Honors Law Program.

Students who major in biology, chemistry, computer information systems, humanities, physics, political science, professional and technical communications, or psychology pursue an accelerated, focused course of study and normally complete both their B.S. and J.D. degrees in six years instead of the usual seven years. Students in other majors may also be able to accelerate completion of both degrees. Undergraduates may seek four-year, merit-based financial aid, including full- and half-tuition scholarships.

Business Honors Law Program

The Business Honors Law Program allows students to obtain both a B.S. in Business Administration and a J.D. degree. Students apply to the Business Honors Law Program prior to the beginning of their freshman year. Business Honors Law students are guaranteed admission to Chicago-Kent College of Law provided they meet the following criteria:

- maintain a 3.25 cumulative undergraduate GPA
- take the Law School Admissions Test (LSAT) by February of their third undergraduate year at IIT and achieve an LSAT score at or exceeding the median score for the Chicago-Kent entering class
- submit a completed application to Chicago-Kent by April 15 of the third undergraduate year
- fulfill the undergraduate requirements specified by the B.S.B.A. program and complete the required undergraduate courses
- maintain a record consistent with the requirements of the bar examining program

Students who participate in the program but do not meet the academic standards for guaranteed admission are invited to apply through the regular competitive application process for admission to Chicago-Kent College of Law after three years of undergraduate study.

While the B.S.B.A. program is a full 4-year program, students in the Business Honors Law Program have the possibility of accelerating the curriculum to complete the B.S. and the J.D. in 6 years. This will require incoming Advanced Placement credit and/or summer school and should be discussed with an academic advisor.
Special Programs

B.S./M.D./D.O./O.D. Programs

In addition to premedical studies, IIT offers three dual degree programs. Students earn a bachelor’s degree from IIT and a medical degree from the medical or optometry school. These innovative programs are designed to meet the urgent and intensifying need for technologically proficient physicians and researchers. More information can be obtained from the Office of Undergraduate Admission at 312-567-3025.

IIT/Midwestern University Chicago College of Osteopathic Medicine Dual Admission Program (4+4)

The IIT/Midwestern B.S./D.O. program is an eight year program open to freshmen applicants in which students complete their undergraduate B.S. degree at IIT in a major of their choosing. Students must complete a standard curriculum of premedical studies either as part of their major or as a premedical studies minor, maintain high academic standards, and obtain a satisfactory score on the MCAT. The final four years are spent at Midwestern University-Chicago College of Osteopathic Medicine, during which the student earns the D.O. degree.

IIT/Rush Medical College B.S./M.D. Early Admission Program (4+4)

The IIT/Rush Medical College Program is an early admission program open to sophomores and to students attending other colleges or universities who transfer to IIT. Students must demonstrate high academic standards and research experience prior to admittance. This program is not open to international students. The MCAT is required. Students admitted to this program will complete their undergraduate B.S. degree at IIT in a major of their choosing. As part of this experience, they will participate in a year-long research project that bridges engineering, science, and medicine. The final four years are spent at Rush Medical College, during which time the student earns the M.D. degree. This program is designed for students who intend to become research-oriented physicians.

IIT/Illinois College of Optometry B.S./O.D. Early Admission Program (3+4)

The IIT/ICO program is an early admission program open to sophomores. Students admitted to the program complete three years at IIT taking courses leading to a B.S. in Biology and four years at Illinois College of Optometry. IIT students are only guaranteed an interview with ICO after they have successfully completed the required biology curriculum outlined by ICO. Courses taken during the first year at ICO also count as senior year level biology courses. Students receive the B.S. in Biology from IIT after completing the first year at ICO and receive the Doctor of Optometry degree after completing all requirements at ICO. Students must maintain high academic standards and perform satisfactorily on the OPT (Optometry Admissions Test).

Premedical Programs

Department Web site: www.iit.edu/~premed

IIT provides excellent preparation for students planning to attend medical or other health-related professional schools. Students majoring in various fields, listed below, earn a B.S. degree and, at the same time, fulfill the prerequisites for medical school:

- Science (biology, chemistry, molecular biochemistry and biophysics, physics) with a minor in Premedical Studies (see pages 156–158). Many science majors will complete most of the courses required for the Premedical curriculum as part of their major requirements. These students will not qualify for a Premedical Studies minor.
- Engineering (biomedical, chemical, electrical, materials science, mechanical) and computer science with a minor in premedical studies (see pages 156–158). Rapidly advancing technology is changing the practice of medicine. Physicians who have a strong technical background will be among the best prepared to utilize the new technology. IIT’s curricula emphasize technical proficiency as well as communication and teamwork, which help students develop the interpersonal skills that are critical in the health professions.

Students interested in pursuing careers in medicine, pharmacy, dentistry, osteopathy, optometry and veterinary science should contact the Premedical Office for further information.

Each student works with a departmental premedical advisor to structure a course of study to meet medical school requirements and to prepare for the Medical College Admission Test (MCAT) in the junior year.
The following is a list of IIT science courses that fulfill the premedical requirements of most medical schools: CHEM 124, CHEM 125, CHEM 237, CHEM 239, CHEM 240, PHYS 123, PHYS 221, BIOL 107, BIOL 109, BIOL 115, BIOL 117. To improve performance during the first year in medical school or to prepare for the MCAT, BIOL 214, BIOL 430, BIOL 445 and PHYS 223 are recommended.

The Premedical Advisory Committee members monitor academic progress, gather information about volunteer and research opportunities, guide the student through the medical school application process, advise in choosing a medical school and in preparation of the AMCAS application, collect and prepare recommendation letters, and assist in preparation for interviews with medical school admission committees.

Post-Baccalaureate Premedical Program

The purpose of the Post-Baccalaureate Premedical Program is to meet the needs of college graduates who have decided to pursue a medical education but who have taken none or only some of the basic science courses required for admission to medical school. The objective of the program is to provide rigorous education in all areas of the premedical sciences which are required for admission to any medical, osteopathic or veterinary school in the country. Students who satisfactorily complete the program will be awarded a Certificate in Premedical Sciences.

Coursework

Students sufficiently prepared in mathematics and English who enter the program in the Fall semester can expect to complete the program in two years. The third year is known as the glide year. This is the year between completing the program and entering medical school. For most students, the glide year provides the opportunity to take additional courses or to deepen their exposure to medicine through full-time employment in a clinical setting or in a medical research laboratory. In order to be eligible for admission to medical school and, subsequently, to be licensed to practice medicine, students must complete the following seven courses in the arts and sciences:

- One year of college English, including a significant amount of expository writing.
- One year of college mathematics, beyond precalculus, including at least one term of calculus. Statistics is recommended as the second mathematics course.
- One year of general physics, including laboratory.
- One year of general chemistry, including laboratory.
- One year of organic chemistry, including laboratory.
- One year of biology, including laboratory, with significant emphasis in molecular and cellular biology.

Advising and Support

On the main campus of Illinois Institute of Technology there are a number of advisors, who together constitute the Premedical Advisory Committee, see: www.iit.edu/~premed/. Post-Baccalaureate premedical students will be assigned an advisor who will be available to counsel them as they plan their program of study and as they prepare their applications to medical school. A number of academic support services will be made available to students in the Post-Baccalaureate Premedical Program. In the University’s Academic Resource Center, students can meet with tutors at no expense for additional help in their premedical courses. In the Premedical Office, support staff will collect and send letters of recommendation to medical schools. Each year the Premedical Office and the IIT Honors Medical Society host a number of events specifically for premedical students including special seminars of medical interest and forums in which current students can learn from experiences of those who have already taken the MCAT or been admitted to medical school. The Princeton Review offers MCAT Preparatory courses at reduced cost to IIT students in the Spring semester each year. Post-Baccalaureate Premedical Students are invited and encouraged to attend weekly colloquia in the biological, chemical and physical sciences and in other departments offering seminars of medical interest. Finally, IIT’s location in the city of Chicago is a special advantage to students in the Post-Baccalaureate Premedical Program. The city is home to six medical schools and numerous hospitals and medical research centers. It is also home to the American Medical Association. This concentration of medical practice will provide IIT post-baccalaureate premedical students with a wide variety of opportunities to gain experience in both clinical settings and in medical research through volunteer service and paid employment.
Special Programs

Academic Standards
Medical schools expect successful applicants to possess excellent grounding in the premedical sciences. The quality of a student’s preparation is measured by the grades earned in premedical courses. For this reason, IIT post-baccalaureate premedical students will be held to high academic standards. At a minimum, students must maintain a cumulative grade point average of 3.00 to remain in the program. Likewise, medical schools have high expectations about an applicant’s character. Students in the IIT Post-Baccalaureate Premedical Program are expected to conduct themselves with honesty and integrity inspiring confidence in their abilities to assume the responsibilities of medical practice. Students in the Post-Baccalaureate Premedical Program are subject to the academic and disciplinary standards detailed in the Illinois Institute of Technology Student Handbook.

Admissions Eligibility
The student must hold the degree of Bachelor of Arts or Science from an accredited college or university in the United States or an equivalent degree from an institution outside the United States. At a minimum, successful applicants must possess a cumulative undergraduate grade point average of 3.00. In most cases, students will not be eligible for admission if they have applied to medical school previously or have completed their premedical preparation elsewhere within the last five years. This is not a remedial program. Students must submit a complete application package to the undergraduate admissions office for full consideration.

Post-Baccalaureate Certificate and Certificate Programs

Certificate Programs
The Department of Civil, Architectural and Environmental Engineering offers a certificate program in Engineering Graphics and CAD. This program is designed to prepare specialists in graphics for positions in business and industry. Students completing the specified courses with satisfactory grades will be awarded a certificate of completion. Consult the civil and architectural engineering section in this bulletin for further information.

The Industrial Technology and Management Program offers the Industrial Technology and Management (INTM) certificate for individuals who want to improve management, supervisory and decision-making skills required for world-class industrial operations.

The Institute of Psychology offers a certificate in Industrial Training. This certificate is designed to help either the experienced skilled worker or a technically educated person to learn methods of knowledge delivery in industrial training settings.

Post-Baccalaureate Certificate Programs
IIT offers a number of certificate programs at the graduate level including bioengineering, computer and network security technologies, computer networking and telecommunications, computer science, construction management, earthquake and wind engineering design, electrical and computer engineering, energy/environment/economics, environmental studies, food process engineering, geoenvironmental engineering, infrastructure engineering and management, intelligent information systems, non profit management, process operations management, psychology, public safety and crisis management, software engineering, technical communication, transportation systems planning, and wireless communications engineering. For information on post-baccalaureate certificate programs, please consult the Graduate College.

Pre-Pharmacy Program
IIT and Midwestern University have a Dual Acceptance Program for Midwestern’s Chicago College of Pharmacy (CCP). To be eligible for this program, students must meet IIT’s admission requirements and also be selected for admission by the CCP Admissions Committee. Successful applicants will be ensured a seat at CCP upon successful completion of the pre-pharmacy requirements within two years at IIT; maintain a minimum cumulative pre-pharmacy grade point average of 3.20; and earn a grade of “C” or higher in all required courses. The Pharmacy College Admissions Test (PCAT) is waived for students who successfully complete the pre-pharmacy program at IIT and who are admitted to CCP in the Dual Acceptance Program.

For further information see www.midwestern.edu.
Study Abroad

IIT encourages students of all majors to consider studying abroad for part of their undergraduate career. Studying abroad enriches the college experience by providing a different intellectual and cultural environment and often enriches the academic program by giving breadth to the major discipline.

General Exchange Programs

IIT has undergraduate exchange programs with the following universities: Institut National des Sciences Appliquées de Lyon (INSA-Lyon), Lyon, France; The Royal Institute of Technology (KTH), Stockholm, Sweden; University of Oviedo, Austurias, Spain; AGH University of Science and Technology (AGH), Krakow, Poland.

Business Exchanges

Students majoring in business may participate in the following exchange programs: Instituto Tecnologico de Monterrey, Monterrey, Mexico; Pforzheim University, Pforzheim, Germany and Singapore Management University, Singapore.

Engineering/Computer Science Exchanges

IIT is member of the Global Engineering Education Exchange (GE³), allowing students to take engineering and computer science courses abroad as an exchange student in over 20 countries, many courses taught in English.

General Study Abroad Opportunities

IIT has many ties with universities around the world where students can earn IIT credit with courses provided in English or in a foreign language. Prior to participating in a study abroad program, a student must meet the international university’s admission criteria and must submit an academic plan of study. Recently, students have attended universities in Australia, England, France, Germany, Mexico, Italy, Singapore, Sweden, and more.

IIT Program in Paris, France

IIT offers a summer program in Paris led by IIT faculty for students in any major. IIT’s College of Architecture manages a semester based program in Paris, France where architecture majors can take classes with IIT faculty.

Students wishing to participate in an exchange program or to study abroad should first contact the International Center for information, application forms, and procedural guidelines. The application process should begin approximately one year before study abroad is anticipated. Only students whose applications are approved by the Study Abroad Committee are permitted to participate in an exchange program or a study abroad program. For more information, please visit the Study Abroad website at studyabroad.iit.edu.
Special Programs

Joint Programs

IIT has established joint programs with the following Chicago-area institutions: DePaul University, Wheaton College, Benedictine University, Elmhurst College, Dominican University and University of St. Francis. These programs differ from a 3+2 transfer program in that students earn two degrees: a bachelor’s degree in an engineering discipline from IIT and a bachelor’s degree in an approved discipline from their host school. Students will live on the campus of their host school while completing the requirements for both degrees.

Admission into the Joint Program at another institution does not guarantee admission to IIT. For additional information, students should contact the Office of Educational Services.

Dual Admissions Programs

IIT has established dual admissions programs with College of DuPage and Joliet Junior College. These 2+2 programs allow students to complete an Associate’s degree and a Bachelor’s degree in 4 years of study with transfer credit. The bachelor’s degree program areas include Information Technology and Management (ITM) and Psychology. For more information, see the Information Technology and Management or Psychology sections of this bulletin, under Optional Programs, or contact the Office of Undergraduate Admission.

 Reserve Officers Training Corps (ROTC)

ROTC programs are available as minors in the regular IIT degree programs. These programs enable men and women to become commissioned officers in the U.S. Air Force, Army, Marine Corps or Navy upon graduation with a bachelor’s degree. ROTC/IIT combined scholarships in many cases allow winners to attend IIT free of charge. Contact the IIT Admission Office or any of IIT’s ROTC departments for scholarship/program information.

Shimer College

Shimer College, a small liberal arts college devoted principally to studying the Great Books, is located on the IIT-Chicago campus. The study of classic texts, in discussion classes of 12 students or fewer, offers a uniquely rigorous and stimulating four-year liberal arts education.

IIT students in good standing may take courses at Shimer College. Many Shimer College courses may be used as electives in IIT degree programs. Admission to Shimer College classes is on a space-available basis and students may be asked to satisfy other requirements prior to acceptance into a Shimer College class. All students must be approved by both Shimer College and IIT to enroll in these classes. Please contact the Office of Educational Services for further information.

VanderCook College of Music

Full-time IIT students in good standing may take courses offered at VanderCook College of Music. The following VanderCook courses, HIST 203, HIST 204, HUM 301, and FT 301 may be used as humanities electives in all IIT degree programs. A maximum of three semester hours of performance courses may be used as free electives. Please contact the Office of Educational Services for further information.

Admission to VanderCook courses is on a space-available basis and students may be asked to audition or to satisfy other requirements prior to acceptance into a VanderCook course. Approval of the IIT Bursar’s office also is required since there is a fee for taking a course at VanderCook.
Art and Architectural History

AAH 119, 120
History of World Architecture I, II
Comprehensive background as well as concentration on individual cultures and their architects from ancient to modern times. Discussion of architectures from around the world. Specific details and expressions of more generalized theories and strategies will be explored. (3-0-3);(3-0-3) (H)(C)

AAH 301
Thinking About Art
A course designed for those who find art pleasing, meaningful or significant and who want to extend the range of their sensibilities. Theories of art will be studied for insight, as well as for historical interest and continuity. Works of art will be studied for their intrinsic value, for their relation to ideas and events, and as cultural artifacts. Regular visits to area museums and galleries will be required. Prerequisite: HUM 102, 104, or 106. (3-0-3) (H)(C)

AAH 322
19th Century American Art and Culture
This course explores the artistic history of the United States, from an agrarian society that developed into an industrialized nation with a distinguished national art. This broad chronological survey begins with the colonial art of Copley, Peale, West and Stuart, followed by the nation building iconography of the Hudson River School. The art of Mount and Bingham reflect antebellum culture, followed by Johnson in post-Civil War America on the eve of the Gilded Age. Finally, the course examines the realism of Homer and Eakins, defining a truly American iconography. Prerequisite: HUM 102, 104, or 106. (3-0-3) (H)(C)

AAH 323
20th Century American Art and Culture
This broadly chronological survey begins with Sargent and Cassatt in the context of European traditions. Impressionism comes to America through the art of Chase and Hassam, and other members of ‘The Ten’. Early Modernism follows with Henri, Glackens and Sloan, leading artists of ‘The Eight’ and the Ashcan painters, including Bellows. The major regionalists include Benton, Wood, and O’Keefe with Hopper emerging as the most significant artist of the century. With New York as the new center of Western art in post-war America, Pollock defines abstract Expressionism, followed by Warhol and Pop-Art. Prerequisite: HUM 102, 104, or 106. (3-0-3) (H)(C)

AAH 380
Topics in Art and Architectural History
An investigation into a topic of current or enduring interest in Art and/or Architectural History which will be announced by the instructor when the course is scheduled. Prerequisite: HUM 102, 104, or 106. (3-0-3) (H)(C)

AAH 468
Five Centuries of Contemporary French Architecture
This broadly chronological survey begins with Sargent and Cassatt in the context of European traditions. Impressionism comes to America through the art of Chase and Hassam, and other members of ‘The Ten’. Early Modernism follows with Henri, Glackens and Sloan, leading artists of ‘The Eight’ and the Ashcan painters, including Bellows. The major regionalists include Benton, Wood, and O’Keefe with Hopper emerging as the most significant artist of the century. With New York as the new center of Western art in post-war America, Pollock defines abstract Expressionism, followed by Warhol and Pop-Art. Prerequisite: HUM 102, 104, or 106. (3-0-3) (H)(C)
Anthropology

Note:
All 400-level Anthropology courses/seminars require the completion of one 200-level course and one 300-level course in a relevant discipline as prerequisites.

ANTH 202
General Anthropology
Introduces students to the study of fossil man, prehistoric archaeology, the origins of civilization, and the nature of human culture. (3-0-3) (S)

ANTH 300
Anthropology of Technology
Studies technology from a cross-cultural perspective using modern ethnographies and historic case studies. Examines an assortment of technologies and end-products by looking at the social, economic, and ideological contexts in which they are embedded. (3-0-3) (S)(C)

Architecture

ARCH 100
Introduction to Architecture
Orientation to contemporary local architecture practice in the context of the history of architectural theory; examination of the changing role of the architect through history; introduction to the formal language and vocabulary of the discipline. Emphasis given to developing written and presentation skills. (2-1-3) (C)

ARCH 109, 110
Freehand Drawing I, II
Drawing from still life, human figure and architecture, both out-of-doors and in the studio; drawing from life in various media. ARCH 109 is prerequisite for ARCH 110. (0-4-2); (0-4-2)

ARCH 113, 114
Architecture Studio I, II
Studio exercises to develop excellence in craftsmanship and visual sensitivity as a foundation for a basic architectural language. Problems of various lengths will deal with the technical skills of drawing and model-making materials and in both two and three dimensions. Using problems of both an abstract and an architectural character, this course will build verbal communication skills and model shop ability. ARCH 113 is prerequisite for ARCH 114. (0-12-6); (0-12-6) (C)

ARCH 125
Introduction to Architectural Computing
The class introduces concept development, design thinking and problem solving related to architectural representation and production technique (digital and analog). The class will look critically at recent digital design developments, as well as introduce students to the history of each “type” of computer program; and the class will introduce students to the basic skills required to productively work with a variety of practice-based software programs. The class will also introduce 3-D “craft-based” thinking/working. (1-2-3)

ARCH 201, 202
Architecture III, IV:
Structures, Building Systems and Assemblies
The development of architectural principles through the study and analysis of building materials. Development of the graphic language in architecture. Consideration of the appropriate use of materials, energy and clear construction as the basis of architecture. Prerequisites: ARCH 113, ARCH 114. ARCH 201 is a prerequisite for ARCH 202. (0-10-5); (0-12-6)

ARCH 226
Digital Media I - 2D CAD
Review of drafting, modeling and rendering computer hardware and software used in the practice of architecture design. Design and management issues are explored with the extensive use of PC CAD systems, including AutoCAD. Contemporary practice applications are discussed. Prerequisite: ARCH 125. (2-2-3)

ARCH 230
Structure and Architecture
The theory and concepts of structures are presented with a visual format and models to emphasize an intuitive comprehension of the fundamental principles of structural behavior including loading, shear and bending moments. Architectural examples of integrated structures then become the format to introduce an understanding of materials and the design process to quantify the engineering. Masonry load-bearing walls and the arch are used as the initial examples to correlate intuition and engineering calculations. (3-0-3) (N)

ARCH 305, 306
Architecture V, VI
Continued development of architectural principles of ARCH 201 and ARCH 202 through the correlation of design process and building systems. Consideration of the interrelation of building, programming, site planning, structure, enclosure systems, energy consumption, and environmental control systems, and the cultural concepts supporting their organization. Prerequisites: ARCH 201, ARCH 202. ARCH 305 is a prerequisite for ARCH 306. (0-12-6); (0-12-6)

ARCH 321
History of Modern Thought in Architecture:
20th Century
Mies, Gropius, Le Corbusier and others constructed modernist canon as much with their manifestos – provocative, assertive, entirely subjective texts packaged in the rhetoric of objectivity – as with their buildings. This course studies the major texts and concepts that have produced architecture in the twentieth century. Study will be made of the modernist legacy and its basis in a canon that has experienced transformations across the course of decades, while retaining essential principles and acquiring a mythic status today. (3-0-3) (C)

ARCH 331, 332
Visual Training I, II
Aesthetic expression as experience. Exercises in the study of form: proportion and rhythm, texture and color, mass and space. Exercises in visual perception and aesthetic judgment. Isolation and analysis; interdependence and integration of sensuous qualities. Aesthetic unity under restrictive conditions. ARCH 331 is a prerequisite for ARCH 332. (3-0-3); (3-0-3)
Course Descriptions

ARCH 333
Visual Training III
Spatial studies with planes and volumes of various materials. Aesthetic expression as experience. Exercises in the study of form: proportion and rhythm, texture and color, mass and space. Exercises in the visual perception and aesthetic judgment. Isolation and analysis; interdependence and integration of sensuous qualities. Aesthetic unity under restrictive conditions. Prerequisites: ARCH 331, ARCH 332. (3-0-3)

ARCH 334
Frame Structural Systems and Steel
Based on statics and strength of materials, analysis of tension, compression and bending, timber and steel members are designed into truss or column and beam structural systems. Connections and shear walls are studied as the transfer of moments to resolve dynamic loads in multiple frames. This engineering knowledge is then directly integrated into the parallel studio experience of developing an architectural project that focuses on steel as the structural material. (3-0-3) (N)

ARCH 335
Reinforced Concrete and Continuous Structures
The plastic qualities of reinforced concrete are studied as an internal distribution of forces based on the continuity of the material. These same principles also apply to all dome, cable and membrane structures. Complete structural systems of concrete are developed with footings, columns, shear walls, and horizontal plate options. More advanced applications include tension systems and thin shell construction. These engineering experiences are then integrated into the practice of designing an architectural studio project based on reinforced concrete as the structural material. (3-0-3) (N)

ARCH 403, 404
Mechanical and Electrical Building Systems for Architects I, II
Selection and design of building support systems: heating, ventilating, air conditioning, water supply, sanitary and storm drainage, power distribution, lighting, communications, and vertical transportation. Systems are analyzed for their effect on building form, construction cost and operating efficiency. ARCH 403 is prerequisite for ARCH 404. (3-0-3); (3-0-3)

ARCH 408
Freehand Drawing
A multi-purpose drawing course offering students a chance to develop on-site sketching skills and creative expression in drawing through a combination of sketching field trips and in-class drawing assignments. (0-3-3)

ARCH 409
Advanced Freehand Drawing
Advanced development of freehand drawing skills in various mediums; still life, human figure, the natural and built environment; studio and field settings. Prerequisite: ARCH 110, ARCH 408 or permission of the instructor. (0-3-3)

ARCH 413
Architectural Practice
Lectures and practical problems dealing with specifications, specification writing, administration of construction, contracts, building law, and professional practice. (3-0-3) (C)

ARCH 414
Professional Practice: Building Case Studies
Case study analysis of buildings, including the design process, building detailing, construction methods, government regulation, owner satisfaction and post-construction forensics. (3-0-3) (C)

ARCH 417, 418
Architecture VII, VIII
Structure as an architectural factor; space as an architectural problem; proportion as a means of architectural expression; the expressive value of materials; painting and sculpture in their relationship to architecture. Application of principles in comprehensive projects involving program, site, and code analysis. Prerequisites: ARCH 305, ARCH 306. ARCH 417 is a prerequisite for ARCH 418. (0-12-6); (0-12-6)

ARCH 419, 420
Architecture IX, X
These studios represent the most extended and developed exercises in macro planning issues. First priority is given to the urgent needs of our environment such as housing, schools or community buildings for urban centers; projects reinforce the entire curriculum, emphasizing complex relationships of buildings in an urban landscape taking all factors into consideration. Students increase their ability to make value judgments, and learn to critically review, test and improve conventional concepts of architecture relative to current demands placed upon the profession. These studios also offer students a variety of possible specialization topics. (0-12-6); (0-12-6)

ARCH 421, 422
Energy Conscious Design I, II
The application of energy conservation methods and renewable energy sources, such as wind power and passive solar systems, will be examined in the development of building energy budgets for a variety of building types. ARCH 421 is a prerequisite for ARCH 422. (3-0-3); (3-0-3)

ARCH 423
Architectural Programming I
Study of the principles of problem definition, problem solving and decision making in the process of design. Specific research methods are reviewed, including those with computer-aided data collection potential. Coursework includes: identification of client/project requirements and constraints; development of a building/project program; cost analysis; development of relevant design options; and presentation skills development. (3-0-3) (C)

ARCH 424
Architectural Construction Management
A survey of the techniques and procedures of construction management as it relates to architectural practice. The organization of the building team, the collaborative design process, cost control, project scheduling, purchasing, accounting, and field supervision are described and documented. (3-0-3)

ARCH 426
Digital Media I - 2D CAD
This course reviews drafting, modeling and rendering, computer hardware and software used in the practice of architectural design. Design and management issues are explored with the extensive use of PC CAD systems. Prerequisite: ARCH 125. (2-1-3)
ARCH 427
Digital Media II - 3D Modeling
A review of 3-D modeling concepts, computer-aided rendering concepts, and methods in the development of architectural design. Extensive use of PC CAD software is expected. Prerequisite: ARCH 125, ARCH 426, AutoCAD or consent of instructor.
(3-0-3)

ARCH 428
Digital Media III - 3D Animation
Review 3-D modeling concepts for animation, preparing camera movements, lightning conditions, special effects, and the digital editing of animation sequences. Extensive use of PC animation and editing software. Prerequisite: ARCH 427.
(1-4-3)

ARCH 429
Digital Media IV - Form Generation
Review programming in CAD systems; programming basics in AutoCAD, extensive creation of 2-D and 3-D objects, data interrogation, manipulation, and extraction, and 2-D and 3-D parametric- and rule-based design. Investigation of form creation, based on mathematical relationships and random generation. Prerequisite: ARCH 427.
(1-3-3)

ARCH 430
Digital Media V - Network Technologies
Study of the relationship between the built environment and networked technologies. Students will learn principals of designing for networked digital space, ways of augmenting physical space through digital technologies, and how networks and web based communication have transformed the practice of architecture and our daily lives. Prerequisite: ARCH 427.
(1-2-3)

ARCH 431, 432
Visual Training I, II
(0-2-2); (0-2-2)

ARCH 441, 442
Landscape Architecture I, II
The natural landscape as a basis of landscape work. Ecotones and their relation to vital habitats including plant materials, their selection and installation. The focus will be on housing with its associated planting including various gardens both formal and informal. ARCH 441 is a prerequisite for ARCH 442.
(2-2-3); (2-2-3)

ARCH 443
Ecology, Sustainability and Site
The role of natural systems in meeting human needs; climate, geology, landforms, soils, vegetation, and animal populations as the bases of agricultural and industrial technologies. Competing demands on natural systems and the necessity for integration and coherence. Ecological sustainability as a basis of architectural works. Site forming and reforming, soils and drainage, grading, orientation, microclimate development and plant materials will be emphasized.
(3-0-3)

ARCH 445
Prairie School and Naturalistic Landscape Design
This significant Midwestern style of landscape and architectural design provided the beginnings of ecology and continues to influence landscape design today. The course specifically addresses the work of designers such as Jens Jensen, O.C. Simonds, and Frank Lloyd Wright, and features IIT's Alfred Caldwell. Students receive an introduction to the types of plants used by these designers and the connections between landscape and architecture will be explored.
(3-0-3)

ARCH 446
History of Landscape Architecture
Survey of the history of landscape design throughout the world, including contemporary projects. The course emphasizes both analytical and holistic approaches to the study of historic designs, highlights the relationship between architecture and landscape, and stresses major concepts that directly influence present day designs. One field trip.
(3-0-3)

ARCH 454
Contemporary Chicago Architecture: Case Studies
Contemporary architecture and urban design projects in Chicago present an invaluable opportunity to learn about some of the most advanced applications in practice today. By examining significant projects currently underway, this course will investigate project execution, design concepts and the various forces affecting projects’ definition and results. Close scrutiny of all the components and personnel will give a better understanding of the complex synergies, advanced technologies, and adept project teams necessary for successful innovative architecture in urban planning.
(3-0-3)

ARCH 456
Topics in Modernism
Historical and critical study of a significant topic in architecture and urban design tied to important building types, architects, architectural movements, historical periods, or theoretical trends of lasting significance in the twentieth century. Conducted as a seminar, this course analyzes texts, writings, and buildings as students prepare research papers, presentations, and other projects. Recent courses have examined Modernism in post-World War II Europe and the United States, and the history of the skyscraper from the Chicago School to the present.
(3-0-3) (C)

ARCH 467
Advanced Materials Workshop
This course is designed to involve students with the architectural craft of materials that can be applied to model and prototype construction. Included will be industrial tours and a product project of the student's own choosing.
(1-4-3)

ARCH 468
Drawing from Travel
A drawing course that develops the perceptual and technical skills critical to drawing in the field. Particular emphasis will be placed on the freehand travel sketch and its capacity to evoke both the physicality and character of a place. Production of a comprehensive drawn record of travels in the form of a journal/sketchbook is required. Various media will be explored. Prerequisite: European Study Program or Paris Program.
(0-6-3)
ARCH 469
Urban Design in Europe
This seminar course will explore current notions of urbanity as observed in the built environment of some cities in Europe. Projects and discussions will complement the design work undertaken in the architecture design studio. Assignments will focus on documentation and analysis of the various daily patterns and rituals of habitation. Requisite: European Study Program or Paris program.
(3-0-3)

ARCH 470
Image City: Mediation of Space
This seminar surveys the interaction between media and the city from the 19th century to the present. A history of the technological innovations of the past two hundred years turns out to be, in large part, a history of the development of the contemporary city, and no account of contemporary urban issues can be considered complete without taking into account the role played in our lives by the media. Accordingly, every space we encounter or create has to be considered mediated.
(3-0-3)

ARCH 473
Conflict and Time
This seminar employs comparative studies of other arts, in particular cinema, to illuminate architectural esthetics and the creative process.
(3-0-3)

ARCH 474
Production/Design
This seminar examines aspects of design in motion pictures. The premise underlying the course is that the act of perception constitutes an act of design; we produce and design the world we perceive. This becomes particularly evident through analysis of the artificially constructed, illusory reality of films.
(3-0-3)

ARCH 485
Structural Design in Architecture I
Examination of the basic and vast range of structural concepts and solutions, in an illustrated and summary format. Examples include historic as well as contemporary structures. Statics and strength of materials, beam theory, shear and bending moment diagrams, deflection analysis. Overview of systems choices in architectural applications. History of strength of materials.
(3-0-3)

ARCH 486
Structural Design in Architecture II
(3-0-3)

ARCH 488
Long-Span and Special Structures
Introduction of structural systems for long spans and special structures. The structural behavior will be discussed and the required strength and stiffness will be evaluated. Individual projects will be assigned to students to be presented at the end of the course.
(3-0-3)

ARCH 489
Structural Systems for Tall Buildings and Long-Span Structures
This course reviews the historical development of the interaction of the structure with architecture and explores future trends and directions. The suitability of different materials and systems will be studied, with emphasis placed on efficiency.
(3-0-3)

ARCH 495
Technology as Design
Since the development of cast iron as a viable construction material in the mid-1800s, one path of architecture has explored the open-ended possibilities of technology. Integrated within the culture, this determination to use the technology of one's time as the creative generator of a new evolving architecture becomes the historical precedent of the thesis of this course.
(3-0-3)

ARCH 497
Special Projects
Independent study of projects and problems. Students must be advised and have consent of the instructor and approval of the dean.
(Credit Variable)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

Architecture
ARCH 500
History of Architectural Ideas: Vitruvius to the Present
ARCH 501
History of Architectural Ideas: 1900 to the Present
ARCH 502
Advanced Topics in History and Theory I
ARCH 503
Advanced Topics in History and Theory II
ARCH 509
Topics in Advanced Technology
ARCH 553
High Rise Building Technology I
ARCH 554
High Rise Building Technology II

Landscape Architecture
LA 443
Forest Preserves, Parks, and Landscapes
LA 501
Nature of Ecology
LA 502
Landscape Architectural History: From Antiquity to Olmsted
LA 503
Advanced Contemporary Theory: Case Studies
Course Descriptions

LA 515
Firms, Parks, Developers

LA 516
Historic Landscape Preservation

LA 545
Studio V: Advanced Landscape Design

LA 546
Studio VI: Advanced Landscape Design

LA 565
Ecology and Materials Workshop I

LA 566
Ecology and Materials Workshop II

LA 567
Ecology and Materials Workshop III

LA 568
Ecology and Materials Workshop IV

Air Force Aerospace Studies

Note:
Air Force 148, 248, 348 and 448 are Air Force Physical Training requirements.

AS 101
The Foundations of the USAF I
Introduction to the U.S. Air Force and Air Force ROTC. This course will focus on officer leadership and professionalism, military customs and courtesies, health and physical fitness, and drill and ceremonies. Leadership Laboratory will continue to emphasize the application of customs and courtesies, health and physical fitness, and drill and ceremonies.
(1-2-1) (C)

AS 102
The Foundations of the USAF II
Introduction to the history and organization of the U.S. Air Force. The origin of the Air Force will be described and the current command structure will be reviewed. Leadership Laboratory continued.
(1-2-1) (C)

AS 201
The Evolution of USAF Air and Space Power I
Examines general aspects of air and space power through a historical perspective. Historical examples are provided to show the development of Air Force capabilities and missions from early flight through the Korean War. Leadership Laboratory continued.
(1-2-1) (C)

AS 202
The Evolution of USAF Air and Space Power II
Continuing study of topics covered in AS 201. Covers the period from the Vietnam War through today. Leadership Laboratory continued.
(1-2-1) (C)

AS 301
Air Force Leadership Studies I
Study of leadership authority, principles and accountability, management fundamentals, oral and written presentation and counseling skills required of an Air Force junior officer. Leadership Laboratory complements this course by providing leadership experience in officer-type activities.
(3-2-3) (C)

AS 302
Air Force Leadership Studies II
Study of professional knowledge, motivation, empowerment, mentoring, delegation, Air Force personnel and evaluation systems, leadership ethics, and oral and written presentation skills required of an Air Force junior officer. Continuation of Leadership Laboratory.
(3-2-3) (C)

AS 401
National Security Affairs
This course is designed for college seniors, it gives them the foundation to understand their role as military officers in American society. The course closely examines the national security process, regional studies, Air Force doctrine, and current issues affecting the military profession. Emphasis is also given on refining oral and written communication skills. Continuation of Leadership Laboratory.
(3-2-3) (C)

AS 402
Preparation for Active Duty
Designed for college seniors, it gives them the foundation to understand their role as military officers in American society. This course builds upon the subject matter previously covered in AS 401 and also further examines regional studies, advanced leadership, ethics, military justice, the military as a profession, and officership. Preparation for active duty life is one of the core elements of this course, and students will learn the role of an Air Force commander in addition to the different services and programs available on a military installation. Emphasis is also given on refining oral and written communication skills. Continuation of Leadership Laboratory.
(3-2-3) (C)

Leadership Laboratory
A study of Air Force customs and courtesies, drills and ceremonies, issuing military commands, instructing, directing and evaluating the preceding skills, studying the environment of an Air Force officer, and learning about the areas of opportunity available to commissioned officers. Planning and controlling of military activities of the cadet corps, preparation and presentation of briefings, and other oral and written communications. Providing interviews, guidance, and information which will increase the understanding, motivation, and performance of other cadets.

Biology

BIOL 100
Introduction to the Profession
Introduction to the biological sciences, scientific method, computing tools, and critical thinking.
(2-0-2) (C)
Course Descriptions

BIOL 107
General Biology Lectures
This course emphasizes biology at the organismal level. It provides an introduction to the study of the structure and function of plants and animals, their origin and evolution, their reproduction and genetics, and their diversity and ecological relations. BIOL 107 plus BIOL 115 constitutes a one-year sequence in biology. Acceptable as part of the science component of the General Education Program. (3-0-3)

BIOL 109
General Biology Laboratory
A laboratory course to accompany BIOL 107. An introduction to laboratory techniques and their application to the understanding of general biological concepts. Prerequisite: Concurrent or previous enrollment in BIOL 107. (0-3-1) (C)

BIOL 115
Human Biology Lectures
This course covers selected topics in biology of particular relevance to humans and to human health and disease. Topics include biology of human cells and selected organ systems; neurobiology including psychoactive drugs and drug addiction; development and birth defects; genetics and genetic diseases; toxicology; the immune system and immunologic diseases such as AIDS; human nutrition and nutritional effects; and microbial human diseases. BIOL 107 plus BIOL 115 constitutes a one-year sequence in biology. Acceptable as part of science component of the General Education Program. (3-0-3)

BIOL 117
Human Biology Laboratory
A biology laboratory course to accompany BIOL 115. A cellular approach to the functional organization of organs and organ systems. Laboratories will include the application of experimental methods and techniques for understanding the relationship between cell structure and function. Prerequisite: Concurrent or previous enrollment in BIOL 115. (0-3-1) (C)

BIOL 210
Microbiology Lectures
A study of microorganisms and their relation to water, sanitation, soil, disease, biotechnology, bioremediation, bioinformatics, and genetic engineering. Prerequisite: BIOL 107, BIOL 115 or equivalent. (3-0-3)

BIOL 214
Genetics
An introduction to transmission and molecular genetics designed for both biology and other science and engineering majors. Applications of genetics to solution of various practical problems will also be discussed. Prerequisite: One semester of college-level biology, e.g., BIOL 107, BIOL 115, or consent of the instructor. (3-0-3)

BIOL 225
Microbiology Laboratory
Isolation and identification of microorganisms, microbial growth, design of culture media, microbial systems as biocatalysts, environmental microbiology, quantitative microbiology, introduction to microbial genetics, and genetic engineering. Prerequisite: Concurrent or previous enrollment in BIOL 210 or consent of instructor. (0-4-2) (C)

BIOL 305
Human Anatomy
This course will provide a comprehensive overview of the structural, functional, and developmental anatomy of the human body. Particular consideration will be given to the bony structures, vasculature, innervation, musculature, and relationships of the various structures to one another. Prerequisite: BIOL 115 or consent of instructor. (3-0-3)

BIOL 320
Biological Literature
Library research on advanced topics in biology, followed by oral presentations of this research. (2-0-2) (C)

BIOL 327
Introduction to Immunology
This course covers general principles of innate and adaptive immunity including structure and function of immune system components, T and B cell development, responses of the immune system to infection, and consequences of immune system failure. Prerequisite: BIOL 107, BIOL 115, or consent of instructor. (3-0-3)

BIOL 401
Introductory Biochemistry
The first part of a one-year Biochemistry series. This semester covers the basic principles of biological chemistry with particular focus on: proteins, nucleic acids, carbohydrates, and lipids; their molecular structure, chemical reactions, and practical methods in characterization; and enzymes and enzyme-catalyzed reactions. Prerequisites: CHEM 237 and (BIOL 107 or BIOL 115). (3-0-3)

BIOL 402
Metabolic Biochemistry
The second part of a one-year Biochemistry series. This semester deals with biochemistry of metabolism, focusing on: glycolysis, the citric acid cycle, gluconeogenesis, electron transport, and the synthesis and breakdown of biomolecules (amino acids, nucleic acids, lipids, and carbohydrates), blood chemistry, lipid transportation, and metabolic control. Prerequisite: BIOL 401. (3-0-3)

BIOL 404
Biochemistry Laboratory
Analytical methods in the chemistry and metabolism of proteins, amino acids, and nucleic acids, including chromatography; spectrophotometry; and electrophoresis. Enzyme reactions. Prerequisite: Previous or concurrent enrollment in BIOL 401 or BIOL 402. (0-6-3) (C)

BIOL 410
Medical Microbiology
Properties of pathogenic bacteria, fungi, viruses, and parasites and their mechanisms of pathogenesis with a focus on organisms that cause human disease. Prerequisite: BIOL 210 or consent of instructor. (3-0-3)
BIOL 414
Genetics for Engineering Scientists
A course in genetics designed for advanced students in engineering and related disciplines. The course will cover transmission and molecular genetics and their application to the solution of various practical problems. A term paper will be required in addition to in-class examinations. Prerequisite: Consent of the instructor.
(3-0-3) (C)

BIOL 430
Animal Physiology
Respiration; circulation; energy metabolism; temperature regulation; water and osmotic regulation; digestion and excretion; muscle and movement; nerve excitation; information control and integration; and chemical messengers. Emphasis on general principles with examples drawn from various animal phyla. Prerequisites: BIOL 107 or BIOL 115. Course is the same as BME 450.
(3-0-3)

BIOL 445
Cell Biology
Modern studies of cell structure and function at the cellular, subcellular, and molecular levels. Topics include molecular components of cells, membranes, membrane-bound organelles, microtubular and cytoskeletal components, and principles of bioenergetics. Prerequisites: BIOL 107 or BIOL 115 and CHEM 237 or consent of the instructor.
(3-0-3)

BIOL 446
Cell Biology Laboratory
A laboratory course in cell biology to accompany BIOL 445.
(0-6-3) (C)

BIOL 490
Individual Study
Prerequisite: Consent of instructor.
(Credit: Variable; maximum three credit hours) (C)

BIOL 491
Biology Research Project
An opportunity for advanced undergraduates to participate in research. A written report covering the procedures, data, and conclusion of the problem is required. Prerequisite: Consent of instructor.
(Credit: Variable) (C)

BIOL 495
Biology Colloquium
Lectures by prominent scientists. This course exposes students to current and active research in biology both within and outside the IIT community. It helps prepare students for a career in research. It is complementary to our academic courses and provides examples of professional/scientific presentations. This course may not be used to satisfy the natural science general education requirement.
(1-0-1)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current *IIT Bulletin: Graduate Programs* for full descriptions.

BIOL 503
Virology

BIOL 512
Advanced Biochemistry

Biomedical Engineering

BME 100
Introduction to the Profession
Introduces the student to the scope of the biomedical engineering profession and its role in society and develops a sense of professionalism in the student. Provides an overview of biomedical engineering through lectures, presentations by outside speakers, hands-on exercises, and scientific literature analyses. Develops professional communication and teamwork skills.
(3-0-3) (C)

BME 200
Biomedical Engineering Application of MATLAB
This course will provide students an opportunity to learn how to use the MATLAB programming environment to solve biomedical engineering problems. Students will learn basic MATLAB functions for importing, analyzing, visualizing, and exporting data, as well as computational techniques for modeling and solving quantitative engineering problems. Examples will be taken from the three areas of specialization offered in the biomedical engineering department: cell and tissue engineering; neural engineering; and medical imaging. Prerequisites: BME 100, ECE 211. Corequisites: CS 105, (CS 115 or CS 201).
(0-3-1)

BME 301
Bio-Fluid Mechanics
Basic properties of fluids in motion. Lagrangian and Eulerian viewpoints, material derivative, streamlines. Continuity, energy, angular and linear momentum equations in integral and differential forms. Applications in biofluids and biomedical devices; Rheology of biological fluids. Prerequisites: BIOL 115, MATH 251, MMAE 200.
(3-0-3)
Course Descriptions

BME 308
Reaction Kinetics for Biomedical Engineers
Introduction to the fundamentals of chemical kinetics. Analysis of rate data; single and multiple reaction schemes. Biomedical topics include: enzymatic pathways, biological systems, receptor-ligand kinetics, microbial cell growth and product formation, and the design and analysis of biological reactors. Prerequisites: CHE 202, MATH 252. Corequisite: BME 301. (3-0-3)

BME 309
Biomedical Imaging and Sensing
An introduction to concepts of imaging and sensing that underlie a wide range of biomedical imaging modalities. Topics covered include cell imaging, multiphoton microscopy for biomedical studies, molecular imaging, infrared imaging, biomedical magnetic imaging, X-ray imaging, nuclear medicine, magnetic resonance imaging, and ultrasound imaging. Prerequisite: PHYS 221. Corequisite: BME 330. (3-0-3)

BME 310
Biomaterials
Application of biomaterials in different tissue and organ systems. Relationship between physical and chemical structure of materials and biological system response. Choosing, fabricating, and modifying materials for specific biomedical applications. Corequisite: CHEM 237. (3-0-3) (C)

BME 315
Instrumentation Laboratory
Laboratory exercises stress instrumentation usage and data analysis used to determine physiological functions and variables and the relations to physiological variability. Prerequisite: ECE 211. Corequisite: BME 330. (1-3-2) (C)

BME 320
Fluids Laboratory
Laboratory experiments in thermodynamics, biological fluid flow, and heat transfer. Emphasis is placed on current methods, instrumentation, and equipment used in biomedical engineering; oral presentation of results; and on the writing of comprehensive reports. Prerequisites: BME 315, BIOL 115. (0-3-1) (C)

BME 330
Analysis of Biosignals and Systems
This course is a junior level introduction to the theoretical and practical aspects of signal processing and dynamic systems behavior as they relate to physiological, biological, and biomedical systems. The topics covered will include sampling theory, continuous and discrete Fourier transforms and series, Laplace transforms, Linear systems theory, signal filtering, models of biological and physiological systems, and analysis of dynamic and feedback systems. Prerequisites: BME 100, MATH 252, ECE 211. (3-0-3)

BME 405
Physiology Laboratory
A laboratory course that demonstrates basic concepts of bioengineering design through experimental procedures involving humans and experimental animals. Statistical principles of experimental design. Study of possible errors. Experiments include nerve action, electrocardiography, mechanics of muscle, membranes, and non-invasive diagnostics in humans. Prerequisite: BME 315. (0-3-1) (C)

BME 410
Transport Phenomena in Living Systems
Convective and diffusive movement and reaction of molecules in biological systems. Kinetics of homogeneous and heterogeneous reactions in biological environments. Mechanisms and models of transport across membranes. Convective diffusion with and without chemical reaction. Prerequisites: BME 301, MATH 252. (3-0-3)

BME 415
Concepts of Neural Engineering
Introduction to the fundamentals and principles of neural engineering. Emphasis is placed on pathological conditions that motivate the engineering design and clinical use of neural prosthetic devices. Pacemakers, FES stimulators, as well as CNS devices are examined, including extracorporeal and implantable systems. Prerequisites: ECE 312, BME 315. (3-0-3) (C)

BME 419
Design Concepts in Biomedical Engineering
Introduction to Design Concepts in Biomedical Engineering. This course aims to educate students on project definition and on the design, development, and technology transfer of potential biomedical products in the context of the student’s major capstone project. Students will learn best practices for designing a marketable medical device, including the design process from the clinical problem definition through prototype and clinical testing to market readiness. Prerequisite: Senior Standing. (1-0-1) (C)

BME 420
Design Concepts in Biomedical Engineering
An introduction to the strategies and fundamental bioengineering design criteria behind the development of biomedical engineering systems and implantable devices that use either synthetic materials or hybrid (biological-synthetic) systems. Analysis and design of replacements for the heart, kidneys, and lungs. Specification and realization of structures for artificial organ systems. Students will be required to complete a team-oriented design project in their chosen track. Prerequisite: BME 419. (3-0-3) (C)

BME 422
Mathematical Methods for Biomedical Engineers
This is a senior level course that integrates mathematical and computational tools that address directly the needs of biomedical engineers. The topics covered include the mathematics of diffusion, pharmacokinetic models, biological fluid mechanics, and bio signal representations and analysis. The use of MATLAB will be emphasized for numerically solving problems of practical relevance. Prerequisites: BME 320, BME 330. (3-0-3)

BME 425
Concepts of Tissue Engineering
An introduction to the strategies and fundamental bioengineering design criteria behind the development of cell-based tissue substitutes. Topics include biocompatibility, biological grafts, gene therapy-transfer, and bioreactors. (3-0-3) (C)
BME 430
Concepts of Medical Imaging
This course is an introduction to the basic concepts in medical imaging, such as: receiver operating characteristics, the rose model, point spread function and transfer function, co-variance and autocovariance, noise, filters, sampling, aliasing, interpolation, and image registration. Prerequisites: BME 315, PHYS 221 or PHYS 224.
(3-0-3) (C)

BME 433
Biostatistics
Application of modern computing methods to the statistical analysis of biomedical data. Sampling, estimation, analysis of variance, and the principles of experimental design and clinical trials are emphasized.
(3-0-3)

BME 435
Thermodynamics of Living Systems
Principles of thermodynamics and conservation of mass applied to living systems and biomedical devices. Macroscopic material balances, the first and second laws of thermodynamics, phase and chemical equilibrium, metabolic stoichiometry, and energetics. Prerequisites: CHE 202, MATH 251.
(3-0-3)

BME 438
Neuroimaging
This course describes the use of different imaging modalities to study brain function and connectivity. The first part of the course deals with brain function. It includes an introduction to energy metabolism in the brain, cerebral blood flow, and brain activation. It continues with an introduction to magnetic resonance imaging (MRI), perfusion-based fMRI, BOLD fMRI, fMRI paradigm design and statistical analysis, introduction to positron emission tomography (PET) and studying brain function with PET, introduction to magnetoencephalography and studying brain function with (MEG). The second part of the course deals with brain connectivity. It includes an introduction to diffusion tensor MRI, explanation of the relationship between the diffusion properties of tissue and its structural characteristics, white matter fiber tractography. Prerequisites: BME 315, PHYS 224, PHYS 221.
(3-0-3)

BME 440
Bioelectric Interfaces
Examination of the fundamental principles and theory behind the interface between recording and stimulating electrodes and biological tissue. Equivalent circuit models for recording and stimulating electrodes are presented. Safety issues and electrochemical stability of stimulating electrodes are detailed. Prerequisites: ECE 312, BME 315.
(3-0-3)

BME 443
Biomedical Instrumentation and Electronics
Principles of circuit analysis are applied to typical transducer and signal recording situations found in biomedical engineering. Basic electrical and electronic circuit theory is reviewed with an emphasis on biomedical measurement applications. A design project is completed by the student. Prerequisites: BME 315 and junior standing.
(3-0-3)

BME 445
Quantitative Neural Function
Computational approach to basic neural modeling and function, including cable theory, ion channels, pre-synaptic potentials, stimulation thresholds, and nerve blocking techniques. Synaptic function is examined at the fundamental level. Neural encoding theories are introduced. Prerequisite: BME 315.
(3-0-3)

BME 450
Animal Physiology
Respiration; circulation; energy metabolism; temperature regulation; water and osmotic regulation; digestion and excretion; muscle and movement; nerve excitation; information control and integration; chemical messengers. Emphasis on general principles with examples drawn from various animal phyla. Same as BIOL 430. Prerequisite: BIOL 107 or BIOL 115.
(3-0-3)

BME 453
Quantitative Physiology
The primary objective of this course is to introduce students to basic physiological concepts using a quantitative approach. The main systems that control the human body functions will be reviewed to enable the students to understand the individual role of each major functional system as well as the need for the integration or coordination of the activities of the various systems. Attempts will be made to highlight the patho-physiological consequences of defects or failures in the organ systems, and the relevant corrective approaches. This course will include lectures from individuals who have relevant expertise in the different organ systems because of the complexity of the human body. Prerequisite: BME 100.
(3-0-3)

BME 460
Advanced Biomaterials
Continuation of biomaterials applications to tissue and organs. Novel applications of materials to replace living tissues and organs, such as skin, blood vessels, and heart valves will be considered. Prerequisite: BME 310.
(3-0-3)

BME 470
Engineering Biocompatible Materials
This course aims to describe synthetic materials that are routinely used as components of various medical devices implanted in the human body. Students will critically examine prosthetic materials used in specific devices. The biological environment relevant to the discussed implant will be reviewed. Problems with current materials will be analyzed. Strategies and techniques required to engineer sophisticated biomaterials for future applications will be developed. Prerequisites: BIOL 107, BIOL 109, BIOL 115, BIOL 117.
(3-0-3) (C)

BME 475
Neuromechanics of Human Movement
Concepts from mechanics and neurophysiology will be introduced and employed to analyze and model human movement, especially of the extremities. Topics will include forward and inverse kinematics and dynamics, muscle modeling, and feedback control. Prerequisites: BME 330, BIOL 115.
(3-0-3)
Course Descriptions

BME 482
Mass Transport for Biomedical Engineers
This course seeks to provide students with an introduction to advanced concepts of mass transport with an emphasis on biological systems. Students will be exposed to derivation of the conservation equations for heat, mass, and momentum. Following derivation of these laws, focus will be placed on mass transport applications, including diffusion, convection-diffusion, diffusion with reactions, and facilitated diffusion. Students will be able to apply mass transport equations to solve problems in biological systems. Prerequisites: CHE 202, BME 301.
(3-0-3)

BME 490
Senior Seminar
(1-0-1) (C)

BME 491
Independent Study
Focused reading and study under the supervision of a BME faculty member. A final written report is required to receive credit. Prerequisite: Consent of instructor.
(Credit: 1-3 credit hours) (C)

BME 492
Undergraduate Research
Independent research (experimental or theoretical/computational) under the supervision of a BME faculty member. A final written report is required to receive credit. Prerequisite: Consent of instructor.
(Credit: 1-3 credit hours) (C)

Business

BUS 100
Introduction to the Profession
Introduction to business as a profession. Topics include the role of business in our society, career opportunities in business, the interface between business and technology, business ethics, and communication skills.
(3-0-3) (C)(E)

BUS 205
Business Basics
The course will provide a basic introduction to accounting and marketing principles, two of the core business skills that every entrepreneur, engineer, or scientist involved with new product introduction needs. It is intended for engineering, science and architecture students who are not taking a business minor. This course does not count towards a business degree or business minor.
(3-0-3)

BUS 210
Financial and Managerial Accounting
Basic financial and managerial accounting topics: GAAP, the major financial statements, accrual accounting, financial reporting alternatives, financial statement analysis, cost behavior, cost systems, short-term and long-term decision-making, and product costing.
(3-0-3)

BUS 211
Financial Accounting and External Reporting
Introduces the three major financial statements: The Balance Sheet, the Income Statement, and the Statement of Cash Flows. The course emphasizes the difference between cash flows and income. Emphasis is placed on understanding financial statements and the procedures underlying them rather than on the preparation of such statements. Accounting software will be used to facilitate the preparation of statements.
(3-0-3) (E)

BUS 212
Managerial Accounting and Control
The sequel to BUS 211, this course concentrates on the uses of accounting information within an enterprise for the following purposes: product costing; short-term and long-term decision-making; budgeting; control of operations; and performance evaluation. The major topical areas covered are cost-volume-profit relationships, relevant costs, cash flow forecasts, flexible budgets, and standard costs. Prerequisite: BUS 211.
(3-0-3)

BUS 221
Statistics for Managerial Decision Making
Introduction to probability concepts; descriptive statistics; probability distributions (binomial, Poisson, normal and t) and their applications. Statistical inference (confidence intervals, hypothesis testing and sample size determination); simple regression, and correlation.
(3-0-3)

BUS 301
Theory of Organization and Management
Introduction to the theory and practice of management; includes basic managerial functions: planning, organizing, leading, and controlling. Communication, motivation, and decision-making techniques are stressed. Also covered are organization structure and design, the dynamics of individual and group interaction, organization climate, managerial styles, the implication of increasing work force diversity, coping with conflict, and methods for achieving organizational improvement. Issues in international business are dealt with at relevant points.
(3-0-3) (C)(E)

BUS 305
Operations Management
Operational problems studied from a systems viewpoint. Development and application of policies, techniques, and models for making decisions in the areas of product and service design, design of operating systems, production, and control of the product or service.
(3-0-3)

BUS 311
Strategic Cost Management
Explores the uses and limitations of accounting information as an integral part of a manager’s decision process. BUS 311 goes beyond BUS 211 and 212 by integrating economics, finance, and statistics among other disciplines in the consideration of actual business cases. Some of the topics included will be cost estimation, activity based costing, quality control, transfer pricing, and divisional performance evaluation. Prerequisites: BUS 212 and BUS 221. Corequisite: BUS 351.
(3-0-3)
BUS 321
Management Science
Introduction to the use of mathematical models in the solution of business problems. Linear programming, network analysis and simulation, analysis of waiting lines.
(3-0-3)

BUS 341
Introduction to Business Law
Legal implications of business transactions are studied. Specific topics include: the nature of law and its place in society, especially in relation to business; contracts and property law studied by the case method; formation and operation of contracts; their significance to the economic order.
(3-0-3) (C)(E)

BUS 351
Financial Management and Decision Making
Provides an introduction to financial management principles that are useful for individuals as well as firms. The three major areas covered are: capital budgeting; capital structure; and the management of working capital. Time will be spent on understanding discounted cash flow methods, valuing debt and equity securities, the capital asset pricing model, risk and return tradeoffs, equity versus debt tradeoffs, and derivative securities. Corequisite: BUS 212.
(3-0-3)

BUS 361
Introduction to Entrepreneurship
The course will examine how social, psychological and economic factors influence and shape entrepreneurship and new venture formation. Students will explore the impact of entrepreneurship and new venture formation on society. This includes an investigation into the contributions that entrepreneurs make to both social and economic systems. Insights into what it is like to work in an entrepreneurial organization including the dynamics and challenges associated with new venture formation and start-up are investigated. The characteristics and attributes of successful entrepreneurial companies will be discussed. This includes comparing and contrasting the similarities and differences between entrepreneurial led small and medium enterprises (SMEs) closely held and family businesses, and public corporations.
(3-0-3) (C)(E)

BUS 362
Entrepreneurship and New Venture Formation
This course is a first introduction to fundamentals of technology entrepreneurship. It will explore the factors that influence entrepreneurial activity as well as the effects of entrepreneurship on society. Technology entrepreneurship involves identifying high potential technology-intensive commercial opportunities, gathering resources and capital, and managing rapid growth and significant risks using principled decision-making skills. The course introduces students to the skills necessary to successfully identify a true business opportunity and to start, grow, and maintain a technology based enterprise. This course is designed for all majors except for business, particularly science, engineering, and architecture students.
(3-0-3)

BUS 363
Creativity and Inventions for Entrepreneurs
Students learn to brainstorm for patentable, feasible ideas and then put them through the initial development stages, including: project work-up, patent searches, prototyping, market research, design interaction, and financial projections. The course involves frequent presentations and reports, including: first prototype, second prototype, project proposal, patent description and claims, and business plans.
(3-0-3) (C)(E)

BUS 371
Introduction to Marketing
Introduction to the activities and decisions faced by marketing managers in modern organizations. Topics include: consumer and organizational buying behavior, marketing research, market segmentation, new product development, product line decisions, pricing channels, distribution, promotion, international marketing, and introduction to marketing strategic planning.
(3-0-3) (C)(E)

BUS 381
Understanding Cultures
This course will familiarize and sensitize students to issues of intercultural perception and communication, with particular attention to interaction within the business world and among professionals in different fields. It provides a context for understanding cultural differences and different taken for granted assumptions about “proper” behavior and the social world. The course has both theoretical and practical aspects. Individual and group tasks include analysis, observation and interviewing, role playing, papers, and presentations. The course systematically examines important cultural aspects and their variation across a broad cultural spectrum and brings in occasional guest lecturers with international business and professional experience.
(3-0-3) (C)

BUS 400
Business Seminar
A series of speakers will be brought in to broaden the perspective of Business majors.
(2-0-1)

BUS 402
Leadership Seminar
This course is designed to help students: Understand the nature of leadership in terms of the traits and behaviors that define effective leadership. Practice and develop leadership behaviors through a series of “simulations” or hands on exercises. Gain feedback regarding their individual leadership strengths and development opportunities. Design a personal development plan to continue to enhance leadership skills outside of this class.
(2-0-1) (E)

BUS 423
Management Information Systems
Application of information systems to business strategy and performance, includes functional capabilities of hardware and software, system development and successful implementation, case studies, and software exercises. Prerequisite: CS 105 or CS 115 or CS 200, BUS 321. Formerly BUS 223.
(3-0-3)
BUS 441
Employee Rights and Legal Protections
This course will focus primarily on the principal policies governing the individual employment relationship, examine the development of the employment contract and protectable legal interests in the employment relationship. Employment handbooks and policy manuals including Best Practices in drafting lawful policies and procedures and maintaining personnel records will be addressed. Hiring, firing, disciplining and investigating employee complaints will be analyzed. Specific attention will also be given to the regulation of pay and hours, recent “Whistle Blower” laws, and alternatives to litigations under alternative dispute resolution procedures. Prerequisite: BUS 341.
(3-0-3) (E)

BUS 452
International Finance
International finance is a combination of macroeconomics and finance. The course covers macroeconomic models of exchange rate and interest rate determination and it also covers the participants and instruments that trade in the foreign exchange market. By the end of this course, participants should be able to construct portfolios and analyze the risk of their positions. Prerequisite: BUS 351.
(3-0-3)

BUS 454
Valuation and Portfolio Management
This course is a survey of asset pricing theory. The fundamentals of bond and option pricing are covered as well as the CAPM, APT, and the Fama French models. Excel spreadsheet modeling is used to illustrate and understand the concepts of Markowitz’s Mean Variance Optimization, equity valuation, option pricing, and utility theory. Prerequisite: BUS 351.
(3-0-3)

BUS 455
Corporate Finance
This course is an advanced introduction to modern corporate finance. Topics include cash flow forecasting, optimal dividend policies, mergers and acquisitions, structured finance, capital at risk, and the risk of adjusted return on capital. The philosophical foundation of the course is the concept of shareholder value added. Students will learn how financial decisions can contribute to the value of the modern corporation. Prerequisite: BUS 351.
(3-0-3)

BUS 456
Financial Economics I
This course provides a systematic exposition of the primary mathematical methods used in financial economics. Mathematical concepts and methods include logarithmic and exponential functions, algebra, mean-variance analysis, summations, matrix algebra, differential and integral calculus, and optimization. The course will include a variety of financial applications including compound interest, present and future value, term structure of interest rates, asset pricing, expected return, risk and measures of risk aversion, capital asset pricing model (CAPM), portfolio optimization, expected utility, and consumption capital asset pricing (CCAPM). Prerequisites: BUS 351.
(3-0-3)

BUS 457
Financial Modeling I
This course is the first of three subjects that form the Financial Modeling Sequence. It is designed to provide students with the necessary programming skills necessary to create realistic financial models. It is an essential core subject and must be completed in order to obtain the MSF degree. Modeling I focuses on the implementation of financial models in MS Excel using Visual Basic for Application (VBA). Prerequisite: BUS 351.
(3-0-3)

BUS 458
Futures Options and OTC Derivatives
This course provides the foundation for understanding the price and risk management of derivative securities. The course starts with simple derivatives, e.g., forwards and futures, and develops the concept of arbitrage-free pricing and hedging. Based upon the work of Black, Scholes, and Merton, the course extends their pricing model through the use of lattices, Monte Carlo simulation methods, and more advanced strategies. Mathematical tools in stochastic processes are gradually introduced throughout the course. Particular emphasis is given to the pricing of interest rate derivatives, e.g., FRAs, swaps, bond options, caps, collars, and floors. Prerequisites: BUS 221, BUS 321, BUS 351.
(3-0-3)

BUS 462
New Product Development
This course offers students a solid grounding in the theory and practice of new product development. Using a combination of theory-based lecture, hands-on exercises and assignments, and discussion, students will develop skills across the entire product development process—from opportunity identification through product launch. Prerequisite: BUS 371.
(3-0-3) (C)

BUS 465
Entrepreneurship in Industry
This course places emphasis on the role of entrepreneurship and innovation in existing manufacturing companies, as well as exploring how to recognize, screen, and bring to market new manufacturing and industrial opportunities. Manufacturing for the purposes of this course considers all activities that combine labor, technology, and materials to produce products of greater value. This includes engineered products, food, pharmaceuticals, and chemicals to name a few. Topics covered in this course include opportunity recognition and new venture formation, building competitive advantage, managing technology and innovation, marketing and sales, management of operations, and financing for growth.
(3-0-3)

BUS 466
Entrepreneurship in Science and Technology
This course introduces the fundamentals of science and technology entrepreneurship. Science and technology entrepreneurship, in itself, is a spirited approach to business leadership that involves identifying high-potential, science and technology-intensive commercial opportunities, gathering resources and capital, and managing rapid growth and significant risks using principled decision-making skills. This course is designed for graduate students in all majors, particularly science, engineering, and design students. Topics introduced in this course are not only relevant to future entrepreneurs, but also to future engineers and scientists in industry. This course introduces the student to the basic tools necessary to successfully identify a true business opportunity, and to start, grow, and maintain a science and technology enterprise.
(3-0-3)
BUS 471
Marketing Management
The Marketing Management course is designed to provide students with an overview of the decision making process in marketing. Marketing decision-making is a process that is essentially wrapped around the fundamental goal of creating value in the marketplace. This requires a professional knowledge of market drivers, competitors’ capabilities, technological trends, and the market dynamics of value. The orientation is toward the kinds of marketing decisions that managers must make within the modern business environment. A primary goal of this course is to provide a thorough understanding of the rapidly changing business environment and the various stakeholders that influence the marketing management function. Prerequisite: BUS 371
(3-0-3) (C)

BUS 473
Marketing Research
This course provides students with a detailed exposure to state-of-the-art marketing research techniques and their applications. Topics include: problem definition, research design, exploratory research, the use of secondary and syndicated data sources, and questionnaire development and analysis. Course exercises and projects will emphasize the use of research information for effective marketing decision making. Prerequisite: BUS 371.
(3-0-3) (E)(C)

BUS 475
Sales Management
Addressing modern technology and methods of selling and presenting highly technical subjects is the basis of this course. Engineers, Information Technologists, and Architects and those dealing with state of the art products will benefit from this new created course that will address the rapidly changing profession of highly skilled representatives, sales persons, and entrepreneurs. The class content will include guest speakers from technical corporations, leading promotion and e-commerce firms to discuss basic requirements for sustaining current customer base and increase gross sales. Application, simulation and case studies from small and mid-sized firms will be reviewed. Prerequisite: BUS 371.
(3-0-3)

BUS 476
Consumer Behavior
Good marketing practice requires an understanding of consumers: their needs, why they buy, and how they buy. This course draws on the fields of psychology, sociology, economics, demography, and anthropology to study the various internal and external influences on consumer behavior and decision making. Topics include: perception, memory and learning, motivation, attitudes and attitude change, involvement, cultural and cross-cultural influences, communications and influence tactics, and customer satisfaction. Prerequisite: BUS 371.
(3-0-3)

BUS 480
Business Strategy
This course is the integration and application of the knowledge and skills learned in the foundation, tools and concepts, and functional field component of the undergraduate management core. Prerequisite: 40 credit hours in management, economics, senior standing or consent of instructor.
(3-0-3) (C)(E)

Civil, Architectural, and Environmental Engineering

CAE 100
Introduction to Engineering I
Introduction to the profession: an introduction to engineering graphics as a problem-solving tool. Basic traditional techniques of orthographic projection, multi-view sketching, isometric and oblique pictorials, sectioning, auxiliary views, dimensioning, detail drawing, use of ANSI standards; and applications in civil and architectural engineering.
(1-2-2) (C)

CAE 101
Introduction to Engineering II
A continuation of CAE 100. Application of PC-based CAD (computer-aided drawing and design) software to presentation and problem solving in civil and architectural engineering applications. Introduction to basic principles of design. Prerequisite: CAE 100.
(0-4-2) (C)

CAE 105
Geodetic Science
(2-2-3)

CAE 110
Professional Practice I
This course is a companion to CAE 100, Introduction to the Profession, emphasizing professional skills and practice. Introduces student to engineering ethics, professional engineering licensing, library science. Helps students develop skills in engineering writing and time management.
(1-0-1)

CAE 111
Professional Practice II
This course is a companion to CAE 100, Introduction to the profession, emphasizing professional skills and practice. Introduces students to engineering ethics, professional engineering licensing, library science. Helps students develop skills in engineering writing and time management.
(1-0-1)

CAE 208
Thermal-Fluids Engineering I
Basic principles of thermodynamics applied to engineering systems using pure substances and mixtures as working fluids. Direct application of the laws of thermodynamics to analysis of closed and open systems, mass and energy flow. Extensive analysis of isentropic processes in cycles, analysis of gas mixtures and psychrometrics in heating and cooling systems. Introduction to fluid mechanics and analysis of fluid statics problems. Prerequisite: CHEM 124 and CS 105; Corequisite: MATH 251.
(3-0-3)
Course Descriptions

CAE 209
Thermal-Fluids Engineering II
Complete the development of fluid mechanics and introduce and develop heat and mass transfer analysis techniques. Description and analysis of fluid kinematics, energy and momentum equations applied to internal/external flow in building engineering systems. Development and application of convection, conduction, and radiation to one-, two-, and three-dimensional systems in steady state and transient regimes of operation as applied to building materials and geometries. Prerequisites: CAE 208. Corequisites: PHYS 224, MATH 252. (4-0-4)

CAE 221
Engineering Geology
Geology and its relationship to civil engineering; minerals; rocks; soil formation; geologic structure; groundwater hydrology; frost action in soils, landslides, shoreline erosion, bluff instability; earthquakes; airphoto interpretation, soil and rock mechanics in relation to engineering geology; subsurface exploration; dams, reservoirs, tunnels; case-history illustrations. (3-0-3)

CAE 301
Hydraulics and Hydrology

CAE 302
Fluid Mechanics and Hydraulics
Fundamental concepts; fluid statics; properties of fluid in motion; fluid flows through orifices, weirs and venturi meters; laminar and turbulent flow in closed conduits; flow in open channels; turbo machinery; measurement in fluid mechanics and hydraulics. Prerequisite: MATH 252. Corequisite: CAE 315. (3-0-3)

CAE 303
Structural Design I
Design loads, factors of safety; load and resistance factors for steel structures. Experimental and analytical study of steel materials subjected to various states of stress. Failure theories, yield and post-yield criteria are treated. Fatigue and fracture mechanics phenomena are related to design practice. The design of tension member, beams, and columns in steel. Prerequisite: MMAE 202. Corequisite: MATH 252. (3-0-3) (D)

CAE 304
Structural Analysis I
The analysis of statically determinate trusses and frames. Determination of internal forces and calculation of deflections. Application of the principle of virtual work and energy methods. Column stability. Prerequisites: MMAE 202, MATH 252. (2-3-3)

CAE 307
Structural Design II

CAE 310
Structural Analysis II
The analysis of statically indeterminate frames. Application of classical methods including superposition, slope deflection, and moment distribution. Introduction to the direct stiffness method and computer analysis of structures. Prerequisite: CAE 304. (2-3-3)

CAE 312
Engineering Systems Analysis
Applications of engineering and economic concepts and analysis to civil engineering systems; practical applications of elementary probability and statistics, operations research, and economics in civil engineering. Prerequisite: MATH 251. (3-0-3) (C)

CAE 315
Materials of Construction
Physical principles of elastic and plastic deformation of construction. Mechanical testing methods including tensile, compressive, toughness, creep, and fatigue. Properties of concrete, wood, iron and steel, and other construction materials. The emphasis is on concepts from solid mechanics which explain the behavior of materials to the extent needed in the design of load-bearing constructs. Prerequisite: MMAE 202. (2-3-3) (C)

CAE 323
Soil Mechanics and testing
Principles of soil permeability and seepage, consolidation, failure theories, earth pressures, and bearing capacity. Laboratory included. Prerequisites: MMAE 202, CAE 221, CAE 301. (2-3-3) (C)

CAE 331
Building Science
Study of the physical phenomena that make climate (rain, snow, humidity, temperature, wind, sun, etc.) influence buildings. The topics include heat transfer methods, solar radiation, vapor in air, air leakage and water condensation, fluids dynamics, and wind movement. Study of indoor thermal environment and thermal comfort of building occupant is offered as well. Prerequisites: PHYS 224 and CAE 209 or consent of the instructor. (3-0-3)

CAE 334
Illumination and Acoustics
CAE 383
Electrical and Electronic Circuits
Introduction to electrical and electronic circuits. AC and DC steady state and transient network analysis. Phasors, AC and Three Phase Power. Diodes, transistors, and operational amplifiers. Prerequisite: PHYS 221.
(3-0-3)

CAE 403
Sound and Vibration Control in Buildings
Basic sound physics and sound propagation in enclosed spaces. Sound and vibration sources in and out of buildings. Theories of sound transmission through building elements. Effects of noise and vibration on man and buildings, criteria and standards. Design of noise control systems. Calculation of airborne and impact sound insulation. Noise and vibration control implementations in various indoor spaces, such as residential units, offices, schools and mechanical rooms. Prerequisite: MATH 151, PHYS 123.
(2-1-3)

CAE 408
Bridge and Structural Design
Design of modern bridges, bridge design requirements, LRFD approach, seismic and wind effects, fatigue in bridges, support design. Prerequisite or Corequisite: CAE 431.
(3-0-3) (D)

CAE 410
Introduction to Wind and Earthquake Engineering
(3-0-3)

CAE 412
Traffic Engineering Studies and Design
Basic traffic engineering studies including traffic volume, speed, accident, and parking studies. Capacity and analysis for various traffic facilities. Design of traffic control devices. Prerequisite: Senior standing or consent of the instructor.
(3-0-3) (D)

CAE 415
Pavement Design, Construction and Maintenance
Pavement types, stresses in flexible and rigid pavements, vehicle pavement interaction. Mathematical models for pavement systems, subgrade support, design of flexible and rigid pavements. Construction procedure, drainage considerations, environmental effects. Rehabilitation and maintenance of pavements. Prerequisite: CAE 323.
(3-3-4)

CAE 416
Facility Design of Transportation Systems
Design and analysis of facilities of transportation systems. Integration of select transportation components and their interrelationships. Design of specific facilities: guideways, terminals, and other elements for railroads, airports, and harbors. Prerequisite: Senior standing or consent of the instructor.
(3-0-3) (D)

CAE 417
Railroad Engineering and Design
History of railroad industry. Train operation, train make-up, and handling. Design and analysis of railroad track structure, track irregularities and their representation. Vehicle/track interaction and dynamic problems associated with it. Performance of railway vehicles. Prerequisite: Senior standing or consent of the instructor.
(3-0-3) (D) (C)

CAE 419
Transportation Engineering and Design
Highway functions, design controls and criteria, element of design, cross-section elements, local roads and streets, at-grade intersections, grade separation and interchanges, highway capacity analysis, and introduction to pavement management. Prerequisite: Senior standing or consent or the instructor.
(3-0-3) (D)

CAE 420
Dynamics of Structures
Fundamentals of free, forced and transient vibration of single and multi-degree of freedom structures, including damping of lumped and distributed parameters systems. Time, frequency, and approximate methods of analysis. Application of numerical methods in time and frequency domain. Response spectra, normal modes, coupling and normal coordinates, and an introduction to earthquake engineering. Prerequisite: CAE 310, MMAE 305.
(3-0-3)

CAE 421
Risk Assessment Engineering
Description and concept of risk, relationship between the likelihood of loss and the impact of loss, engineering hazards assessment and risk identification and evaluation using fault tree analysis, failure mode and effect analysis, risk analysis applications with practical statistics, etc.
(3-0-3)

CAE 422
Sprinklers, Standpipes, Fire Pumps, Special Suppression, and Detection Systems
Review and introduction to fluid dynamics applied to sprinklers, standpipes, fire pumps, and special suppression systems; hydraulic design criteria and procedures for sprinklers requirements, standpipes, fire pumps, special suppression systems, and detection and alarm systems using nationally recognized design (National Fire Protection Association) standards, water supply requirement systems and distributions. Prerequisite: CAE 301 or CAE 302 or consent of the instructor.
(3-0-3)

CAE 424
Introduction to Fire Dynamics
Introduction to fire, physics and chemistry, and mass and heat transfer principles, fire fluid mechanic fundamentals, fundamentals and requirements of the burning of materials (gases, liquids, and solids), fire phenomena in enclosures such as pre-flashover and post-flashover. Prerequisite: CAE 309 or consent of the instructor.
(3-0-3)

CAE 425
Fire Protection and Life Safety in Building Design
Fundamentals of building design for fire and life safety. Emphasis on a systematic design approach. Basic considerations of building codes, fire loading, fire resistance, exit design, protective systems, and other fire protection systems.
(3-0-3)
CAE 426
Computer Fire Modeling Theory and Applications
Introduction to fire heat-transfer processes and fire testing materials; application of a set of quantitative engineering tools (fire models) to construct a description of conditions that occur or might occur during the course of a fire; life and structural impacts from hostile fires in buildings. Prerequisite: CAE 424 or consent of instructor. (3-0-3)

CAE 430
Probability Concepts in Civil Engineering Design
Introduction to probability, modeling, and identification of nondeterministic problems in civil engineering. Development of stochastic concepts and simulation models and their relevance to design and decision problems in various areas of civil engineering. Prerequisite: MATH 252. (3-0-3) (D)

CAE 431
Steel Design
Design of steel beams, plate girders, and beam columns. Bolted and welded connections. Design of typical frame systems. Prerequisites: CAE 303, CAE 310, CAE 315. (3-0-3) (D)

CAE 432
Concrete and Foundation Design
Design of reinforced concrete building frames and continuous structures. Design of girders, slabs, columns, foundations, and retaining walls. Prerequisites: CAE 307, CAE 310, CAE 315. (3-0-3) (D)

CAE 433
Repair of Existing Building Structures
Building repair and retrofit issues are discussed. Specific requirements of a building for repair and/or reconstruction are emphasized. Methods of assessing building conditions, including forensic structural engineering are covered. Repair and strengthening methods based on types of materials (steel, concrete, masonry, and timber), occupancy and function (residential, commercial), and building values are covered along with demonstration case studies and illustrative examples. Prerequisites: CAE 431 and CAE 432 or consent of instructor. (3-0-3)

CAE 435
Experimental Analysis of Structures
The analysis of structures (prototypes) with the aid of models constructed from metal, wood, plastics, and other materials. Geometrical, mathematical, demonstration, and direct and indirect models will be treated. Comparisons of experimental results with results from computer models will be made. Similitude and the theory of models will be treated. Individual and group project work will be emphasized. Prerequisites: CAE 304 and CAE 310; or CAE 351 and CAE 352. (2-2-3)

CAE 436
Design of Masonry and Timber Structures
Design of unreinforced and reinforced masonry structural elements and structures. Serviceability and ultimate capacity design. Seismic response, resistance, and design. Design of wood columns and bending members. Mechanical fasteners and connectors. Prerequisite: CAE 310, CAE 307 or CAE 352 or consent of the instructor. (3-0-3) (D)

CAE 439
Introduction to Geographic Information Systems
Geographic information system (GIS) technology allows databases which display and query information in new ways. This course will teach general GIS and GPS skills and concepts, useful to students and practitioners in a variety of disciplines. Students will complete a final GIS project relevant to their field of study. This hands-on class will use ESRI’s Arc View and Spatial Analyst products, as well as Trimble GeoExplorer GPS units. (3-0-3)

CAE 442
Finite Element Methods in Framed Structures
Basic principles and review of elasticity, energy methods, stiffness method, element stiffness matrix, finite elements applications in frames, trusses, curved and non-prismatic and plate structures, convergence of finite element models, practical problems. Prerequisite: CAE 310. (3-0-3)

CAE 457
Geotechnical Foundation Design
Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, and underpinning. Drainage and stabilization. Prerequisites: CAE 301, CAE 323. (3-0-3) (D)

CAE 461
Plumbing and Fire Protection Design
Study of plumbing systems and fixtures including wastewater, water supply, and venting systems. Study of fire protection systems for buildings including pipe sizing, pumps, sprinklers, gravity and pressure vessels, and controls. Prerequisite: CAE 301 or CAE 302. (3-0-3)

CAE 463
Building Enclosure Design
Design of building exteriors, including the control of heat flow, air and moisture penetration, building movements, and deterioration. Study of the principle of rain screen walls and of energy conserving designs. Analytical techniques and building codes are discussed through case studies and design projects. Prerequisite: CAE 331 or consent of the instructor. (3-0-3)

CAE 464
HVAC Systems Design
Study of the fundamental principles and engineering procedures for the design of heating, ventilating, and air conditioning systems; HVAC system characteristics; system and equipment selection; duct design and layout. Attention is given to energy conservation techniques and computer applications. Prerequisites: MMEA 320, CAE 302, CAE 209, CAE 331 or consent of the instructor. (3-0-3)

CAE 465
Building Energy Conservation Technologies
Identification of the optimal energy performance achievable with various types of buildings and service systems. Reduction of infiltration. Control systems and strategies to achieve optimal energy performance. Effective utilization of daylight, heat pumps, passive and active solar heaters, heat storage, and heat pipes in new and old buildings. Prerequisite: CAE 209, CAE 331 or consent of the instructor. (3-0-3)
Course Descriptions

CAE 466
Electric and Communication Systems Design
Study of the analysis and design of electrical systems in buildings utilizing the National Electrical Code. The topics include basic circuits, AC and DC single phase, three-phase power, transients, capacitance and inductance, branch circuits, panelboards, motors, system sizing, and electrical distribution in buildings. Study of the design and specification of communication systems in buildings, including fire alarm, security, sound, and telephone. Prerequisite: CAE 383.
(3-0-3)

CAE 467
Lighting Systems Design
An intensive study of the calculation techniques and qualitative aspects of good luminous design. Topics covered include photometric quantities and color theory, visual perception, standards, daylight and artificial illumination systems, radiative transfer, fixture and lamp characteristics, control devices, and energy conservation techniques. Design problems, field measurements, computer, and other models will be used to explore the major topics. Prerequisite: MATH 151.
(3-0-3)

CAE 468
Architectural Design
Architectural Design is the first of a two-part sequence of architectural design and planning for architectural engineers. Students learn the basic theory and practice of the Architectural Design Process from the architect’s perspective. Topics include the Logical Process of Architectural Design Development, Design Approach, and Architectural Presentation Techniques taught through lecture and lab instruction. Prerequisites: CAE 331, 334.
(2-1-2)

CAE 469
Architectural Studio
Architectural Studio is the second of a two-part sequence of architectural design and planning for architectural engineers. Students learn the basic theory and practice of the Architectural Design Process from the architect’s perspective. Topics include the Logical Process of Architectural Design Development, Design Approach, and Architectural Presentation Techniques taught through Studio instruction. Prerequisite: CAE 468.
(0-4-2)

CAE 470
Construction Methods and Cost Estimating
The role of estimating in construction contract administration. Types of estimates. Unit costs and production rates; job costs. Preparing bid for complete building project using manual methods and the CSI format; checking quantity take-off and cost estimating in selected divisions using a computer package. Prerequisite: senior standing.
(2-3-3) (D)

CAE 471
Construction Planning and Scheduling
(3-0-3) (D)(C)

CAE 472
Construction Site Operation
Construction site layout and mobilization. Liabilities of the parties. Methods of construction. Concrete form design and fabrication. Scaffolding, temporary facilities, and equipment. Safety on sites. Introduction to construction productivity. Prerequisite: Senior standing.
(3-0-3)

CAE 473
Construction Contract Administration
Characteristics of the construction industry. Project delivery systems. Duties and liabilities of the parties at the pre-contract stage. Bidding. Contract administration including duties and liabilities of the parties regarding payments, retaining, substantial and final completion, scheduling and time extensions, change orders, changed conditions, suspension of work, contract termination, and resolution of disputes. Contract bonds. Managing the construction company. Labor law and labor relations. Prerequisite: Senior standing.
(3-0-3)

CAE 482
Hydraulic Design of Open Channel Systems
Uniform flow design; backwater profiles in natural streams; gradually varied flow practical problems; spatially varied flow; flow through nonprismatic and nonlinear channels; gradually varied unsteady flow; rapidly varied unsteady flow; flood routing; numerical solutions of open channels. Prerequisite: CAE 301 or consent of instructor.
(3-0-3) (D)

CAE 483, 484
Environmental Systems for Buildings I, II
Introduction of the operation and design of building systems for climate control, water and drainage, fire safety, electrical supply, illumination, transportation, and noise control.
(3-0-3); (3-0-3)

CAE 486
Soil and Site Improvement
Theory of water flow through porous media. Site improvement techniques including grading and drainage, dewatering, reinforcement, and slurry trenches. Soil improvement techniques including replacement, in situ compaction, preloading and subsurface drainage, grouting, freezing, prewetting, and heating. Prerequisites: CAE 323 or consent of instructor.
(3-0-3)

CAE 491
Undergraduate Research
Special research problems in civil engineering under individual supervision of instructor. Seminar presentation is required. Prerequisite: Senior standing, minimum GPA of 3.0, and consent of instructor.
(Credit: Variable; maximum four credit hours)

CAE 497
Special Project
Special design project under individual supervision of instructor. Prerequisite: Senior standing, minimum GPA of 3.0, and consent of instructor.
(Credit: Variable; maximum four credit hours)
Course Descriptions

Chemical Engineering

CHE 100
Introduction to the Profession I
Introduction to chemical engineering and engineering productivity software. Communication skills development, technical reporting and presentation, engineering ethics, and a variety of topics are discussed.
(1-2-2) (C)

CHE 101
Introduction to the Profession II
A continuation of CHE 100. Advanced engineering applications of productivity software. Engineering graphics and technical flowsheeting. Team project research and project management skills. Internet publishing. Prerequisite: CHE 100.
(1-2-2) (C)

CHE 202
Material and Energy Balances
Material and energy balances for engineering systems subjected to chemical and physical transformations. Calculations on industrial processes. Prerequisites: CS 105, MATH 152 and one semester of chemistry.
(3-0-3) (C)

CHE/IPRO 296
Introduction to IPRO
Introduction to process design. Principles and techniques in effective teamwork. Performance of selected design tasks in project groups integrated with CHE/IPRO 496. Practice with process design software. First part of the CHE/IPRO 296–CHE/IPRO 496 project package. Only CHE students should register for this course. Prerequisites: CHE 101, CHE 202.
(0-2-1) (C)

CHE 301
Fluid Mechanics
(3-0-3)

CHE 302
Heat and Mass Transfer Operations
Fundamentals of heat and mass transfer. Heat and mass transfer design equations as applied to selected unit operations. Mass transfer in stage-wise and continuous contacting equipment. Unsteady state operations in mass transfer equipment. Prerequisite: CHE 301.
(3-0-3)

CHE 311
Foundations of Biological Science for Engineering
This introductory course will introduce engineering students to basic principles of biological sciences, which will enable them to understand more advanced courses on the topic and provide a solid base for further study in all life sciences-related topics required in their individual programs. Prerequisite: CHEM 125.
(3-0-3)

CHE 351
Thermodynamics I
Laws of thermodynamics and their application to chemical engineering operations. Prerequisites: CHE 202, CHEM 343.
(3-0-3)

CHE 402
Introduction to Microelectronics Fabrication Technology
(3-0-3)

CHE 406
Transport Phenomena
The equations of change in different coordinate systems (mass, momentum, and energy transport). Velocity distribution in laminar and turbulent flow. Formulation and analytical solutions to the problems of viscous flow, molecular diffusion, heat conduction, and convection. Prerequisites: CHE 301, CHE 302, MATH 252.
(3-0-3)

CHE 412
Foundations of Biological Science for Engineering
This course will introduce engineering students to basic principles of biological sciences, which will enable them to understand more advanced courses on the topic and provide a solid base for further study in all life sciences-related topics required in their individual programs. Prerequisite: CHEM 125.
(3-0-3)

CHE 418
Chemical and Biological Engineering Laboratory II
Laboratory work in distillation, humidification, drying, gas absorption, filtration, and other areas. Prerequisites: CHE 302, CHE 317.
(1-3-2) (C)

CHE 423
Chemical Reaction Engineering
Introduction to the fundamentals of chemical kinetics. The design, comparison, and economic evaluation of chemical reactors. Emphasis on homogeneous systems. Prerequisites: CHE 302, CHE 351, CHE 433.
(3-0-3)

CHE 426
Statistical Tools for Engineers
Descriptive statistics and graphs, probability distributions, random sampling, independence, significance tests, design of experiments, regression, time-series analysis, statistical process control, and introduction to multivariate analysis. Prerequisites: MATH 151 and junior standing.
(3-0-3)

CHE 430
Petrochemical Process Operations and Design
Chemical and engineering aspects of current petrochemical and petroleum refining processes will be emphasized, including chemical conversions (catalytic and thermal), physical separations, and evaluation of alternatives. Design and simulation of refinery separation systems with emphasis on distillation columns. Prerequisite: CHE 494.
(3-0-3)
CHE 431
Artificial Intelligence Applications in Engineering
Knowledge-based system (KBS) architecture, knowledge representation, inferencing strategies. Real-time KBS. Commercial KBS shells. Neural networks, backpropagation, radial basis functions, recurrent neural networks. Applications in product design, process modeling, diagnosis, and control. Prerequisite: Consent of instructor.
(3-0-3)

CHE 433
Process Modeling and System Theory
(3-0-3)

CHE 435
Process Control
Dynamic process models, stability assessment, feedback and feedforward control strategies, design and tuning of closed-loop controllers, time domain and frequency domain design, and performance assessment methods. Multivariable systems, interaction, multi-loop control. Software for process simulation and controller design. Prerequisites: CHE 302, CHE 433.
(3-0-3)

CHE 437
Discrete Time Systems and Computer Control
Sampling of continuous-time signals, Z-transforms, modeling, digital controller design using state-space and pole-placement design methods, adaptive control and self-tuning regulators. Emphasis on chemical process systems and applications. Prerequisite: CHE 435.
(3-0-3)

CHE 439
Numerical and Data Analysis
(3-0-3)

CHE 451
Thermodynamics II
Second-law analysis of cooling, separation, combustion, and other chemical processes. Chemical reaction equilibrium and processing applications. Prerequisite: CHE 351.
(2-0-2)

CHE 461
Aerosol Measurement Principles, Techniques, and Applications
Principles of particle motion in liquid and gaseous media, methods of aerosol measurement, and application of aerosol measurements. Introductory concepts on definitions of size and mass and volume concentration of particles. Methods of size distribution data analysis and sampling, monitoring, and measurement of particles. Prerequisites: CHE 301 and junior standing.
(3-0-3)

CHE 465
Electrochemical Energy Conversion
Thermodynamic, kinetic, and mass-transfer fundamentals of electrochemical devices. Potential and its measurement. Batteries and fuel cells. Fundamentals of corrosion and corrosion prevention. Prerequisites: CHEM 244 and CHE 302 or comparable mass-transfer course.
(3-0-3)

CHE 467
Fuel Cell System Design
System or chemical reactor perspective of fuel cell design. Macro-scale modeling of fuel cell applications. Description of electrode/electrolyte assemblies and the three phase region, polarization curve characterization, analysis of continuous flow systems, typical fuel cell stack configurations, analysis of spatial non-uniformities in stacks, and balance of plant design. Prerequisite: CHE 423 or consent of instructor.
(3-0-3)

CHE 470
Introduction to Polymer Science
An introduction to the basic principles that govern the synthesis, processing, and properties of polymeric materials. Topics include: classifications, synthesis methods, physical and chemical behavior, characterization methods, processing technologies, and applications. Same as CHEM 470 and MMAE 470. Prerequisites: CHEM 124, MATH 251, PHYS 221.
(3-0-3)

CHE 475
Food Engineering I
Fundamentals of food engineering. Theory and practice in food processing operations including material and energy balances, flow of fluid foods, heat transfer, thermal process evaluation, and evaporation. Problem-solving and calculation sessions.
(3-0-3)

CHE 476
Food Engineering II
Companion course to CHE 475 and normally follows it. Covers freezing and thawing, dehydration (including freeze-drying), distillation, and extraction.
(3-0-3)

CHE 481
Flow-Through Porous Media and Fundamentals of Reservoir Engineering
(3-0-3)

CHE 483
Synthetic Energy
Introduction to synthetic energy processes. Analysis, design, and operation features of synthetic energy conversion processes. Fluidized beds, packed beds, and dilute gas solids systems. The principles of low, medium, and high-BTU coal gasification and waste-to-energy conversion processes. Prerequisite: CHE 351 or MMAE 320.
(3-0-3)
Course Descriptions

CHE 486
Applied Particulate Technology
Applications of particulate technology to industrial processes: sampling, collection, characterization, segregation, flow, handling, storage, agglomeration, mixing, pulverization, attrition, and transport of particles. Application of powder technology to material processing and environmental engineering.
(3-0-3)

CHE 489
Fluidization
(3-0-3)

CHE 491
Undergraduate Research
Students undertake an independent research project under the guidance of a chemical and biological engineering faculty member.
(Credit: Variable, 3 hours maximum)

CHE 494
Chemical Process Design
Introduction to design techniques and economic aspects of chemical processes. The technical and economic aspects of equipment selection and design and alternative methods of operation. Prerequisites: CHE 302, CHE 451, CHE 433. Corequisites: CHE 423, CHE 435.
(2-2-3) (C)

CHE/IPRO 496
Design IPRO
Group project in process design. Integration of technical, safety, environmental, economic, and societal issues in process development and design. Final part of the IPRO project package. Project teams consist of chemical engineering students and students from other disciplines and professions. Students from other academic units should register for designated section of IPRO 497 (3 credits) and their contribution to the project tasks will be defined accordingly. Only CHE students should register for this course. Prerequisites: CHE 494, CHE/IPRO 296. Corequisites: CHE 423, CHE 435.
(1-2-2) (C)

CHE 498
Chemical Process Safety Design
The purpose of the course is to apply process design disciplines to integrate safety as a principal of the design process. Typical subjects are: thermodynamics of explosions, identification of process hazards, chemical reactivity hazards, dispersion models of release of toxic materials, tires, and fire protection, and HAZOP and Fault Tree analysis. Prerequisite: CHE 494.
(3-0-3)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

CHE 503
Thermodynamics

CHE 505
Fluid Properties

CHE 506
Entrepreneurship and Intellectual Property Management

CHE 507
Computer-Aided Design

CHE 508
Process Design Optimization

CHE 509
Advanced Topics in Reactor Engineering

CHE 510
Fluid Dynamics

CHE 511
Regulatory Issues in Pharmaceutical Process

CHE 512
Heat Transfer

CHE 514
Process Analytical Technology

CHE 515
Natural Gas Processing

CHE 516
Gas Transmission and Distribution

CHE 517
Gas Utilization Technologies and Economics

CHE 518
Mass Transfer

CHE 519
Biosensors

CHE 520
LNG Fundamentals and Technologies

CHE 522
Fundamentals of Combustion

CHE 523
Fundamentals of Heterogeneous Catalysis

CHE 524
Industrial Catalysts

CHE 525
Chemical Reaction Engineering

CHE 527
Petrochemical Systems

CHE 528
Analysis and Simulation of Chemical Processes

CHE 529
Advanced Process Design of Chemical Process

CHE 530
Advanced Process Control

CHE 532
Process Modeling
Course Descriptions

CHE 533
Statistical Analysis of Systems

CHE 535
Applications of Mathematics to Chemical Engineering

CHE 536
Computational Techniques in Engineering

CHE 538
Polymerization Reaction Engineering

CHE 540
Flow-Through Porous Media and Fundamentals of Reservoir Engineering

CHE 541
Renewable Energy Technologies

CHE 542
Fluidization and Gas-Solids Flow Systems

CHE 543
Energy, Environment and Economics

CHE 544
Kinetic Theory of Multiphase Flow

CHE 545
Metabolic Engineering

CHE 551
Advanced Transport Phenomena

CHE 553
Advanced Thermodynamics

CHE 555
Polymer Processing

CHE 560
Statistical Quality and Process Control

CHE 561
Chemical Engineering Calculations

CHE 563
Separation Processes

CHE 565
Electrochemical Engineering

CHE 566
Fundamentals of Electrochemistry

CHE 573
Biore separations

CHE 575
Polymer Rheology

CHE 576
Industrial Chemistry

CHE 577
Bioprocess Engineering

CHE 579
Enzyme Reactor Engineering

CHE 580
Biomaterials

CHE 581
Processing and Applications of Polymer Composite Materials

CHE 582
Interfacial and Colloidal Phenomena with Applications

CHE 583
Pharmaceutical Engineering

CHE 584
Tissue Engineering

CHE 585
Drug Delivery

CHE 586
Particulate Technology

CHE 587
Particle Processing and Characterization

Chemistry

CHEM 100
Introduction to the Profession
Introduction to the chemical sciences, scientific method, computing tools, and interrelations of chemical sciences with biology, physics and other professions.
(2-0-2) (C)

CHEM 122
Principles of Chemistry I without Laboratory
Same as CHEM 124 except without the laboratory.
(3-0-3)

CHEM 124
Principles of Chemistry I
 Foundations of chemistry, atoms and molecules, stoichiometry of chemical reactions, thermochemistry, properties of gases, states of matter, chemical solutions, and kinetics. Molecular basis for chemical reactivity, atomic structure, periodicity, chemical bonding.
(3-3-4) (C)

CHEM 125
Principles of Chemistry II with Laboratory
Chemical equilibria, the chemistry of acids and bases, solubility, and precipitation reactions. Introduction to thermodynamics and electrochemistry. Chemistry of selected elements and their compounds. Prerequisite: CHEM 124.
(3-3-4) (C)

CHEM 126
Principles of Chemistry II
Same as CHEM 125 except without the laboratory. Prerequisite: CHEM 124.
(3-0-3)
Course Descriptions

CHEM 237
Organic Chemistry I
The constitution and properties of the different classes of organic compounds, with considerable attention to stereochemistry, reaction mechanisms, synthetic organic and bio-organic chemistry, and spectroscopy. The laboratory work involves an introduction to the major synthetic and analytical techniques of organic chemistry including the preparation of representative organic compounds and the isolation of compounds from natural sources. Prerequisite: CHEM 125 or Advanced Placement credit. (3-4-4) (C)

CHEM 239
Organic Chemistry II
Sequel to Organic Chemistry I. Constitution and properties of organic compounds at a fundamental level. Introduction to biological materials and synthetic polymers. Prerequisite: CHEM 237. (3-0-3)

CHEM 240
Organic Chemistry Laboratory
Laboratory part of CHEM 239. Techniques for advanced organic preparations. Identification and characterization of organic compounds, including modern instrumental methods. Prerequisite or corequisite: CHEM 239. (1-4-2) (C)

CHEM 247
Analytical Chemistry
Introduction to the theory and applications of analytical chemistry. Laboratory emphasis on obtaining and interpreting quantitative data. Statistical data analysis, equilibrium expressions, pH, volumetric and gravimetric analysis, fundamentals of spectroscopy, fundamentals of electrochemistry, and analytical separations. Laboratory experiments include acid-base behavior, potentiometry with ion-specific electrodes, spectroscopy (UV-visible and atomic absorption), and chromatography (ion-exchange, high pressure liquid, and gas-liquid). Prerequisite: CHEM 125 or consent of instructor. (2-4-3) (C)

CHEM 321
Instrumental Analysis
Theory and application of modern instruments in chemical procedures. Standard spectroscopic methods including Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and ultraviolet spectroscopy. Separation techniques using high pressure liquid chromatography and gas chromatography. Other topics relevant to advanced chemical instrumentation will also be covered. Prerequisite: CHEM 247. (2-6-4) (C)

CHEM 343
Physical Chemistry I
Equations of state; kinetic molecular theory; temperature-dependent enthalpies and heat capacities of chemical compounds and of chemical reactions; entropy and the Gibbs free energy; chemical equilibrium; phases with variable composition; solutions of charged particles; surface phenomena. Prerequisites: MATH 251 and/or MATH 292. (3-0-3)

CHEM 344
Physical Chemistry II
Quantum theory, molecular structure and spectroscopy, chemical equilibrium constants from statistical mechanics, phenomenological and mechanistic chemical reaction kinetics, transport phenomena from molecular perspective. The laboratory will include experiments dealing with gases, thermodynamics, liquid solutions, phase equilibria, electrochemistry, chemical kinetics, spectra, molecular structure, and treatment of data. Prerequisites: CHEM 247, CHEM 343. (3-4-4) (C)

CHEM 415
Inorganic Chemistry
In-depth introduction to the vast sub-field of the discipline dealing with all elements in the periodic table. Presents balanced blend of facts and theories in modern inorganic chemistry. Emphasis is on bonding, electronic, magnetic and structural features exhibited by inorganic and organometallic compounds and their reactivities. Modern concepts including symmetry and group theory and their relevance in solving chemical problems. Bioinorganic chemistry and “high-tech” inorganic materials and solids are introduced. Prerequisite: CHEM 239. (3-0-3)

CHEM 416
Inorganic Chemistry Laboratory
An advanced laboratory with emphasis on synthesis and characterization of inorganic and organometallic compounds. Prerequisites: CHEM 240, CHEM 415. (1-7-3) (C)

CHEM 434
Spectroscopic Methods in Identification and Analysis
Characterization and analysis by mass, vibrational, nuclear magnetic resonance, and electronic spectroscopy. Structure-spectra correlations applied to organic and inorganic compounds with examples drawn from diverse areas, e.g., pollutants, toxic materials, polymers, etc. The laboratory work includes the characterization of prepared or separated organic compounds by chromatographic, chemical, and spectroscopic methods. Prerequisites: CHEM 239. (3-4-4)

CHEM 450
Introduction to Research
Required for chemistry majors. Designed to give research experience in a faculty research laboratory. (0-8-3) (C)

CHEM 451
Modern Techniques in Chemical Literature
A guide to the use of traditional and automated methods for the storage and retrieval of chemical information. (3-0-3)

CHEM 454
Chemical Modeling and Simulations
A numerical methods and computer applications course for chemists; emphasis on software rather than hardware; results of numerical analysis and linear algebra presented and applied to solution of chemical problems. Prerequisites: CS 105, MATH 152, CHEM 344. (3-0-3)
Course Descriptions

CHEM 455
Advanced Organic Chemistry
A survey of organic name reactions and modern reagents for organic synthesis with an emphasis on their utility in multi-step synthesis. Prerequisites: CHEM 239, CHEM 344. (3-0-3)

CHEM 470
Introduction to Polymer Chemistry
The course will cover basics of polymer nomenclature, synthesis, characterization, and the relationship between polymer structures and properties. Examples of major applications of polymeric materials including biopolymers will be presented. Prerequisites: CHEM 239 (3-0-3)

CHEM 485
Chemistry Colloquium
Lectures by prominent scientists. This course exposes students to current and active research in chemistry both within and outside the IIT community. It helps prepare students for a career in research. It is complementary to the academic courses and provides examples of professional/scientific presentations. This course may not be used to satisfy the natural science general education requirement. (1-0-1)

CHEM 487
Senior Thesis in Chemistry
Original work carried on by the student under the guidance of a staff member. A careful search of the literature is required before the study is begun, and continued reference to the chemical literature is expected as the work progresses. A written report is required. Prerequisites: CHEM 450, CHEM 451 (0-12-4) (C)

CHEM 497
Special Projects
For Juniors and Seniors. (Credit Variable) (C)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

CHEM 500
Advanced Analytical Chemistry

CHEM 501
Liquid Chromatography

CHEM 502
Gas Chromatography

CHEM 503
Chromatography Techniques

CHEM 504
Chemometrics

CHEM 505
Spectroscopic Methods

CHEM 506
Sampling and Sample Preparation

CHEM 508
Analytical Methods Development

CHEM 509
Spectral and Physical Methods

CHEM 510
Electronics and Interfacing

CHEM 518
Electrochemical Methods

CHEM 520
Advanced Inorganic Chemistry

CHEM 521
Structural Inorganic and Solid-State Chemistry

CHEM 522
Efficient Chemical and Materials Synthesis

CHEM 524
Intellectual Property Management

CHEM 530
Organic Reaction Mechanisms

CHEM 531
Tactics of Organic Synthesis

CHEM 535
Advanced Polymer Chemistry

CHEM 537
Polymer Chemistry Laboratory

CHEM 538
Physical Biochemistry

CHEM 539
Introduction to Pharmaceutical Chemistry

CHEM 542
Polymer Characterization and Analysis

CHEM 550
Chemical Bonding

CHEM 552
Chemical Kinetics

CHEM 553
Advanced Chemical Thermodynamics

Communication

COM 101
Writing in the University
A study of the use of writing, reading, and discussion as a means of discovering, questioning, and analysing ideas, with an emphasis on audience, context, and the use of revision. This course satisfies IIT’s Basic Writing Proficiency Requirement. It does not satisfy a general education requirement in the humanities and social or behavioral sciences. (3-0-3) (C)
Course Descriptions

COM 111
Writing in the University for Non-Native Students
Designed to deal with the special writing problems of those students whose native language is not English. Equivalent to COM 101. This course satisfies IIT’s Basic Writing Proficiency Requirement. It does not satisfy a general education requirement in the humanities and social or behavioral sciences.
(3-0-3) (C)

COM 125
Language and Culture I
An introduction to a language and culture, which will vary each year.
(3-0-3) (H)(C)

COM 126
Language and Culture II
A continuation of the study of the language and culture begun in COM 125. Prerequisite: COM 125 or permission of the department.
(3-0-3) (H)(C)

COM 301
Introduction to Linguistics
The objective analysis of language structure and structural hierarchies; a survey of the basic concepts of linguistics; the phoneme, the morpheme, language change over time and space. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 306
World Englishes
This course surveys dialects of English around the world, including the U.S., U.K., Canada, India, Africa, and the Caribbean, focusing on vocabulary, word, and sentence formation, and sound patterning. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 308
Structure of Modern English
This course examines the structure of the English language from four different approaches: traditional-prescriptive, descriptive, generative, and contextual. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 309
History of the English Language
Beginning with basic concepts in language development, this course traces the evolution of modern English, from its Indo-European roots, through Germanic, Anglo-Saxon, Middle English and Early Modern English. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 315
Discourse Analysis
The analysis of language "flow" beyond sentence boundaries. Working with both spoken and written discourse, students will consider culture and gender-related patterns, and will apply findings from discourse analysis to communication problems in politics, education, healthcare, and the law. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 334
Literature of Modern Science
A study of the literature of science from the Renaissance to modern times. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 371
Persuasion
The study of covert and overt persuasion and their influences on society and individuals. Prerequisite: HUM 102, 104, or 106.
(3-0-3)

COM 372
Mass Media and Society
This course will cover the history and structure of mass media, from print through film and broadcasting to the Internet, and their influence on American society. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 377
Communication Law and Ethics
This course explores ethical and legal issues concerning communication in diverse contexts, such as: the mass media e.g. print, broadcast, and electronic; government and politics; organizational hierarchies e.g. public and private sector workplaces; academic life e.g. the classroom, student, and faculty affairs; and interpersonal relations e.g. love, friendship, marriage. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 380
Topics in Communication
An investigation into a topic of current interest in communication, which will be announced by the instructor when the course is scheduled. Prerequisites: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 401
Advanced Composition and Prose Analysis
Critical analysis of various types of prose, with stress on the art as well as the craft of writing. The student is required to write several critical papers. Prerequisite: Satisfaction of IIT’s Basic Writing Proficiency Requirement.
(3-0-3) (C)

COM 421
Technical Communication
Principles and practice in the communication of technical materials. Students work on the design, writing, and revising of reports, articles, manuals, procedures, and proposals, including the use of graphics. Works by modern writers are analyzed. Credit not granted for both COM 421 and MT 301. Prerequisite: Satisfaction of IIT’s Basic Writing Proficiency Requirement.
(3-0-3) (C)

COM 423
Communication in the Workplace
A study of communications relating to scientific, technological, and corporate structures. This course will help students develop workplace communication skills, including the ability to analyze situations, determine appropriate communications forms, write and revise work-related documents, and give oral presentations. Prerequisite: Satisfaction of IIT’s Basic Writing Proficiency Requirement.
(3-0-3) (C)
COM 424
Document Design
Theory and practice of designing scientific, technical, and business documents whose primary aim is usability. Focus on overall organization, page design, visuals, and typography. Emphasis on print media such as brochures, reports, and user manuals, but with attention to parallels in screen-based media such as the Web. Prerequisite: Satisfaction of IIT’s Basic Writing Proficiency Requirement.
(3-0-3) (C)

COM 425
Editing
Principles and strategies for revising technical and scientific works for usability, clarity, consistency, and reliability. Examination of professional standards and practices for text, tables, graphics, and documents, but with emphasis on cohesion (signals of the line of thought), style, and usage. Prerequisite: Satisfaction of IIT’s Basic Writing Proficiency Requirement.
(3-0-3) (C)

COM 428
Verbal and Visual Communication
Introduces students to the issues, strategies, and ethics of technical and professional presentations, and provides students with opportunities to engage in public address, video presentations and conferencing, and group presentations. Analysis of audience types and presentation situations, group dynamics, persuasive theories, language, and mass media. Prerequisite: Satisfaction of IIT’s Basic Writing Proficiency Requirement.
(3-0-3)

COM 430
Introduction to Web Design and Management
Presupposing only that students know how to use a Web browser, this course teaches beginning HTML, basic page layout and design principles, basic multimedia, and the structure of Websites, and also introduces students to WYSIWYG Web page generation software and FTP software.
(3-0-3)

COM 431
Intermediate Web Design and Management
A continuation of COM 430, this course goes more deeply into HTML, multimedia, and some of the advanced features of WYSIWYG editors. Prerequisite: COM 430 or permission of instructor.
(3-0-3)

COM 432
Advanced Web Design and Management
A continuation of COM 430 and COM 431, this course covers the most current Web technologies. Prerequisite: COM 431 or permission of instructor.
(3-0-3)

COM 435
Intercultural Communication
An introduction to the problems of communication across cultures, with emphasis on the interplay of American civilization with those of other cultural areas. Prerequisite: HUM 102, 104, or 106.
(3-0-3) (H)(C)

COM 440
Introduction to Journalism
Introduction to the principles and practices of modern American journalism. Students will analyze news stories and media and will cover and report on campus area events. Student-generated news stories will be discussed, analyzed, and evaluated. Prerequisite: A 100-level humanities course.
(3-0-3) (H)(C)

COM 491
Independent Reading and Research
For advanced students. Prerequisite: Consent of department.
(Credit: Variable) (H)(C)

COM 497
Special Project
(Credit: Variable) (H)(C)

City and Regional Planning

CRP 201
The Dwelling
Programming and planning for human habitation in dwellings and neighborhoods. Housing as a response to human needs. Environmental impacts and their amelioration. Building types and their impacts on programmatic needs. Examples of various housing schemes in and around Chicago.
(3-0-3)

CRP 203
Housing and Housing Types
The planning of rooms, houses, and groups of houses. Analysis of climatological, physical, psychological, and social needs and their influence on the planning of housing. Government regulations, costs and financing, and their impact on housing. Includes single-family detached, row housing, walk-ups, and low-rise construction. Limited work in other buildings. Lectures, seminars, and drawing problems. Prerequisite: Drawing ability.
(1-4-3)

CRP 425, 426
History and Architecture of Cities I, II
Selected topics in the history and development of human settlements. Examination of the forces affecting city development in history. These courses are taught as seminars and meet for one three-hour period per week.
(3-0-3); (3-0-3)

CRP 465
The Ecological Basis of Planning
The role of natural systems in meeting human needs. Natural systems. Climate, geology, land forms, soils, vegetation, and animal populations as the bases of agricultural and industrial technologies. Competing demands on air, water, and land. Limiting factors.
(3-0-3)

CRP 497
Special Problems
Independent study of projects and problems. Prerequisites: Students must be advised and have consent of the instructor and approval of the dean.
(Credit: Variable)
GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

CRP 519
Principles of City Planning I

CRP 520
Principles of City Planning II

Computer Science

CS 100
Introduction to the Profession
An introduction to science and engineering as a profession. Examines the problem-solving process used in engineering and science. Emphasizes the interdisciplinary and international nature of problem-solving and the need to evaluate solutions in terms of a variety of constraints: computational, financial, and social.
(1-2-2) (C)

CS 105
Introduction to Computer Programming I
Introduces the use of a high-level programming language (C/C++) as a problem-solving tool, including basic data structures and algorithms, structured programming techniques, and software documentation. Designed for students who have had little or no prior experience with computer programming.
(2-1-2)

CS 115
Object-Oriented Programming I
Introduces the use of a high-level object-oriented programming language as a problem-solving tool including basic data structures and algorithms, object-oriented programming techniques, and software documentation. Designed for students who have had little or no prior experience with computer programming. For students in CS and CS-related degree programs.
(2-1-2)

CS 116
Object-Oriented Programming II
Continuation of CS 115. Introduces more advanced elements of object-oriented programming including dynamic data structures, recursion, searching and sorting, and advanced object-oriented programming techniques. For students in CS and CS-related degree programs. Prerequisite: CS 115.
(2-1-2)

CS 201
Accelerated Introduction to Computer Science
Problem-solving and design using an object-oriented programming language. Introduces a variety of problem solving techniques, algorithms, and data structures in object-oriented programming. Prerequisite: CS 105 or experience using any programming language.
(3-2-4)

CS 330
Discrete Structures
Introduction to the use of formal mathematical structures to represent problems and computational processes. Topics covered include Boolean algebra, first-order logic, recursive structures, graphs, and abstract language models. Corequisite: CS 116 or CS 201. Credit will not be granted for both CS 330 and MATH 230.
(3-0-3)

CS 331
Data Structures and Algorithms
Implementation and application of the essential data structures used in computer science. Analysis of basic sorting and searching algorithms and their relationship to these data structures. Particular emphasis is given to the use of object-oriented design and data abstraction in the creation and application of data structures. Prerequisite: CS 116 or CS 201.
(2-2-3)

CS 350
Computer Organization and Assembly Language Programming
Introduction to the internal architecture of computer systems, including micro-, mini-, and mainframe computer architectures. Focuses on the relationship among a computer’s hardware, its native instruction set, and the implementation of high-level languages on that machine. Uses a set of assembly language programming exercises to explore and analyze a microcomputer architecture. Prerequisite: CS 116 or CS 201. Credit will not be granted for both CS 350 and ECE 242.
(2-2-3) (C)

CS 351
Systems Programming
Examines the components of sophisticated multi-layer software systems, including device drivers, systems software, applications interfaces, and user interfaces. Explores the design and development of interrupt-driven and event-driven software. Prerequisites: CS 331 and (CS 350 or ECE 242).
(2-2-3)

CS 397
Special Projects
Prerequisite: Written consent of instructor.
(Credit: Variable)

CS 411
Computer Graphics
(3-0-3) (T)

CS 422
Data Mining
This course will provide an introductory look at concepts and techniques in the field of data mining. After covering the introduction and terminologies to Data Mining, the techniques used to explore the large quantities of data for the discovery of meaningful rules and knowledge such as market basket analysis, nearest neighbor, decision trees, and clustering are covered. The students learn the material by implementing different techniques throughout the semester. Prerequisite: CS 331, CS 401, or CS 403 and strong programming knowledge.
(3-0-3) (T)(C)
CS 425
Database Organization
Overview of database architectures, including the Relational, Hierarchical, Network, and Object Models. Data base interfaces, including the SQL query language. Database design using the Entity-Relationship Model. Issues such as security, integrity, and query optimization. Prerequisite: CS 331, CS 401, or CS 403.
(3-0-3) (T)(C)

CS 429
Information Retrieval
Overview of fundamental issues of information retrieval with theoretical foundations. The information-retrieval techniques and theory, covering both effectiveness and run-time performance of information-retrieval systems are covered. The focus is on algorithms and heuristics used to find documents relevant to the user request and to find them fast. The course covers the architecture and components of the search engine such as parser, stemmer, index builder, and query processor. The students learn the material by building a prototype of such a search engine. Prerequisite: CS 331 or CS 401 and strong programming knowledge.
(3-0-3) (T)(C)

CS 430
Introduction to Algorithms
Introduction to the design, behavior, and analysis of computer algorithms. Searching, sorting, and combinatorial algorithms are emphasized. Worst case and average bounds on time and space usage. Prerequisites: (CS 330 or MATH 230) and CS 331; or CS 401 or CS 403.
(3-0-3) (T)(C)

CS 440
Programming Languages and Translators
Study of commonly used computer programming languages with an emphasis on precision of definition and facility in use. Scanning, parsing, and introduction to compiler design. Use of compiler generating tools. Prerequisites: (CS 330 or MATH 230 and CS 351); or CS 401 or CS 403.
(3-0-3) (T)

CS 441
Current Topics in Programming Languages
New topics in programming language design such as concepts of concurrent and distributed programming, communicating sequential processes, and functional programming. System development tools and language features for programming. Introduction to programming language semantics. Prerequisite: CS 331 or CS 401 or CS 403.
(3-0-3) (T)

CS 445
Object-Oriented Design and Programming
Introduction to methodologies for object-oriented design and programming. Examines the object model and how it is realized in various object-oriented languages. Focuses on methods for developing and implementing object-oriented systems. Prerequisite: CS 331 or CS 401 or CS 403.
(3-0-3) (T)

CS 447
Distributed Objects
This course provides an introduction to the architecture, analysis, design, and implementation of distributed, multi-tier applications using distributed object technology. The course focuses on the services and facilities provided by an Object Request Broker (ORB). Students will use a commercially available ORB and Database Management System to develop distributed object applications. Prerequisite: CS 445.
(3-0-3) (T)(C)

CS 450
Operating Systems
Introduction to operating system concepts, including system organization for uniprocessors and multiprocessors, scheduling algorithms, process management, deadlocks, paging and segmentation, files and protection, and process coordination and communication. Prerequisites: (CS 331 and CS 350) or (CS 331 and ECE 242) or (CS 401 and CS 402) or CS 403.
(3-0-3) (T)

CS 455
Data Communications
Introduction to data communication concepts and facilities with an emphasis on protocols and interface specifications. Focuses on the lower four layers of the ISO-OSI reference model. Prerequisite: CS 450.
(3-0-3) (T)

CS 458
Information Security
An introduction to the fundamentals of computer and information security. This course focuses on algorithms and techniques used to defend against malicious software. Topics include an introduction to encryption systems, operating system security, database security, network security, system threats, and risk avoidance procedures. Prerequisites: CS 425 and CS 450.
(3-0-3) (T)(C)

CS 470
Computer Architecture
Introduction to the functional elements and structures of digital computers. Detailed study of specific machines at the register transfer level illustrates arithmetic, memory, I/O and instruction processing. Prerequisites: (CS 350 or ECE 242) and ECE 218.
(2-2-3) (T)(C)

CS 480
Artificial Intelligence: Planning and Control
Introduction to computational methods for intelligent control of autonomous agents, and the use of programming paradigms that support the development of flexible and reactive systems. These include heuristic search, knowledge representation, constraint satisfaction, probabilistic reasoning, decision-theoretic control, and sensor interpretation. Particular focus will be placed on real-world application of the material. Prerequisites: CS 331 or CS 401 or CS 403; Corequisite: MATH 474 or equivalent.
(3-0-3) (T)
Course Descriptions

CS 481
Artificial Intelligence: Language Understanding
Theory and programming paradigms that enable systems to understand human language texts and extract useful information and knowledge. For example, extraction of structured event representations from news stories or discovering new research hypotheses by analyzing thousands of medical research articles. The course covers a variety of text analysis and text mining methods, with an emphasis on building working systems. Connection to information retrieval, data mining, and speech recognition will be discussed. Prerequisites: MATH 474 and (CS 331 or CS 401 or CS 403).
(3-0-3) (T)

CS 482
Information and Knowledge Management Systems
This Capstone course is designed as a project course whose purpose is to enable students to see how various algorithms and systems from the prerequisite courses can be used in context to create useful knowledge management tools. Class periods will be divided among discussion of design of information and knowledge management systems, lectures on effective project management techniques, and hands-on advising of student project group meetings. Prerequisites: CS 425 and two of (CS 422, CS 429, CS 481) or consent of instructor.
(3-0-3) (T)

CS 485
Computers and Society
Discussion of the impact of computer technology on present and future society. Historical development of the computer. Social issues raised by cybernetics. Prerequisite: COM 421 or COM 428.
(3-0-3) (C)

CS 487
Software Engineering
Study of the principles and practices of software engineering. Topics include software quality concepts, process models, software requirements analysis, design methodologies, software testing, and software maintenance. Hands-on experience building a software system using the waterfall life cycle model. Students work in teams to develop all life cycle deliverables: requirements document, specification and design documents, system code, test plan, and user manuals. Prerequisite: CS 331, CS 401, or CS 403.
(3-0-3) (T)(C)

CS 491
Undergraduate Research
Prerequisite: Written consent of instructor.
(Credit: Variable)

CS 495
Topics in Computer Science
This course will treat a specific topic, varying from semester to semester, in which there is particular student or staff interest. Prerequisite: Consent of instructor.
(Credit: Variable)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

CS 511
Topics in Computer Graphics

CS 512
Computer Vision
Course Descriptions

CS 552
Distributed Systems

CS 553
Pervasive Computing

CS 555
Analytic Models and Simulation of Computer Systems

CS 560
Computer Science in the Classroom

CS 561
The Computer and Curriculum Content

CS 570
Comparative Computer Architecture

CS 580
Medical Informatics

CS 581
Advanced Artificial Intelligence

CS 582
Robotics

CS 583
Expert Systems

CS 584
Neural Networks

CS 585
Natural Language Processing

CS 586
Software Systems Architectures

CS 587
Software Project Management

CS 588
Advanced Software Engineering Development

CS 589
Software Testing and Quality Assurance

CS 595
Topics in Computer Science

ECE 211
Circuit Analysis I

ECE 212
Analog and Digital Laboratory I
Basic experiments with analog and digital circuits. Familiarization with test and measurement equipment; combinational digital circuits; familiarization with latches, flip-flops, and shift registers; operational amplifiers; transient effects in first-order and second-order analog circuits; PSpice software applications. Corequisites: ECE 211, ECE 218. (0-3-1) (C)

ECE 213
Circuit Analysis II
Sinusoidal excitation and phasors. AC steady-state circuit analysis using phasors. Complex frequency; network functions, pole-zero analysis, frequency response, and resonance. Two-port networks, transformers, mutual inductance, AC steady-state power, RMS values, introduction to three-phase systems, and Fourier series. Concurrent registration in ECE 214 is strongly encouraged. Prerequisite: Grade of “C” or better in ECE 211. (3-0-3)

ECE 214
Analog and Digital Laboratory II
Design-oriented experiments including counters, finite state machines, sequential logic design, impedances in AC steady-state, resonant circuits, two-port networks, and filters. A final project incorporating concepts from analog and digital circuit design will be required. Prerequisite: ECE 212. Corequisite: ECE 213. (0-3-1) (C)

ECE 218
Digital Systems
Number systems and conversions, binary codes, and Boolean algebra. Switching devices, discrete and integrated digital circuits, analysis and design of combinational logic circuits, Karnaugh maps, and minimization techniques. Counters and registers. Analysis and design of synchronous sequential circuits. Concurrent registration in ECE 211 and ECE 212 is strongly encouraged. Prerequisite: Sophomore standing. (3-0-3)

ECE 242
Digital Computers and Computing
Basic concepts in computer architecture, organization, and programming, including: integer and floating point number representations, memory organization, computer processor operation (the fetch/execute cycle), and computer instruction sets. Programming in machine language and assembly language with an emphasis on practical problems. Brief survey of different computer architectures. Prerequisites: CS 116, ECE 218. (3-0-3)
Course Descriptions

ECE 307 Electrodynamics

(4-0-4)

ECE 308 Signals and Systems
Time and frequency domain representation of continuous and discrete time signals. Introduction to sampling and sampling theorem. Time and frequency domain analysis of continuous and discrete linear systems. Fourier series, convolution, transfer functions. Fourier transforms, Laplace transforms, and Z-transforms. Prerequisite: ECE 213. Corequisite: MATH 333.

(3-0-3)

ECE 311 Engineering Electronics

(3-3-4) (C)

ECE 312 Electronic Circuits

(3-3-4) (C)

ECE 319 Fundamentals of Power Engineering

(3-3-4) (C)

ECE 403 Communication Systems

(3-0-3) (P)

ECE 404 Digital and Data Communications
Channel capacity, entropy; digital source encoding considering bit-rate reduction, quantization, waveshaping and intersymbol interference. Analysis and design of digital modulators and detectors. Matched filters. Probability of error analysis. Credit will be given for either ECE 404 or ECE 406, but not for both. Prerequisites: ECE 308 and MATH 474.

(3-0-3) (P)

ECE 405 Communication Systems with Laboratory
Power spectral density. Analysis of amplitude and frequency modulated systems. Frequency division multiplexing: spectral design considerations. The sampling theorem. Analog and digital pulse modulation systems. Time division multiplexing. Design for spectral efficiency and crosstalk control. Introduction to information theory. Laboratory includes energy and power signal applied to linear filters; amplitude, frequency, and phase modulation/demodulation with band limited additive noise channels; pulse modulation; and open-ended project. Credit will be given for either ECE 403 or ECE 405 but not both. Prerequisite: ECE 308.

(3-3-4) (P)(C)

ECE 406 Digital and Data Communications with Laboratory
Channel capacity, entropy, digital source encoding considering bit-rate reduction, quantization, waveshaping, and intersymbol interference. Analysis and design of digital modulators and detectors. Matched filters. Probability of error analysis. Laboratory covers modulation, detection, sampling, analog-to-digital conversion, error detection, and an open-ended project. Credit will be given for either ECE 404 or ECE 406, but not for both. Prerequisites: ECE 308 and MATH 474.

(3-3-4) (P)(C)

ECE 407 Introduction to Computer Networks with Laboratory
Emphasis on the physical, data link, and medium access layers of the OSI architecture. Different general techniques for networking tasks, such as error control, flow control, multiplexing, switching, routing, signaling, congestion control, traffic control, scheduling will be covered along with their experimentation and implementation in a laboratory. Credit given for ECE 407 or ECE 408, but not both. Prerequisite: Senior undergraduate standing or graduate standing.

(3-3-4) (P)(C)

ECE 408 Introduction to Computer Networks
Emphasis on the physical, data link, and medium access layers of the OSI architecture. Different general techniques for networking tasks, such as error control, flow control, multiplexing, switching, routing, signaling, congestion control, traffic control, scheduling will be covered. Credit given for ECE 407 or ECE 408, but not both. Prerequisite: Senior undergraduate standing or graduate standing.

(3-0-3)
ECE 411
Power Electronics
Power electronic circuits and switching devices such as power transistors, MOSFETs, SCR, GTOs, IGBTs and UJT are studied. Their applications in AC/DC, DC/DC, DC/AC, and AC/AC converters as well as switching power supplies are studied. Simulation mini-projects and lab experiments emphasize power electronic circuit analysis, design, and control. Prerequisite: ECE 311.
(3-3-4) (P)(C)

ECE 412
Electric Motor Drives
Fundamentals of electric motor drives are studied. Applications of semiconductor switching circuits to adjustable speed drives, robotic, and traction are explored. Selection of motors and drives, calculating the ratings, speed control, position control, starting, and braking are also covered. Simulation mini-projects and lab experiments are based on the lectures given. Prerequisites: ECE 311, ECE 319.
(3-3-4) (P)(C)

ECE 417
Power Distribution Engineering
This is an introduction into power distribution systems from the utility engineering perspective. The course looks at electrical service from the distribution substation to the supply line feeding a customer. The course studies the nature of electrical loads, voltage characteristics, and distribution equipment requirements. The fundamentals of distribution protection are reviewed including fast/relay coordination. Finally, power quality and reliability issues are addressed. Prerequisite: ECE 319.
(3-0-3) (P)

ECE 418
Power System Analysis
Transmission systems analysis and design. Large scale network analysis using Newton-Raphson load flow. Unsymmetrical short-circuit studies. Detailed consideration of the swing equation and the equal-area criterion for power system stability studies. Credit will be given for ECE 418 or ECE 419, but not for both. Prerequisite: ECE 319
(3-0-3)

ECE 419
Power Systems Analysis with Laboratory
Transmission systems analysis and design. Large scale network analysis using Newton-Raphson load flow. Unsymmetrical short-circuit studies. Detailed consideration of the swing equation and the equal-area criterion for power system stability studies. Use of commercial power system analysis tool to enhance understanding in the laboratory. Credit will be given for ECE 418 or ECE 419, but not for both. Prerequisite: ECE 319.
(3-3-4) (P)

ECE 420
Analytical Methods in Power Systems
Fundamentals of power systems operation and planning. Economic operation of power systems with consideration of transmission losses. Design of reliable power systems, power systems security analysis, optimal scheduling of power generation, estimation of power system state. Prerequisite: ECE 319.
(3-0-3) (P)

ECE 421
Microwave Circuits and Systems
Maxwell’s equations, waves in free space, metallic and dielectric waveguides, microstrips, microwave cavity resonators and components, ultra-high frequency generation and amplification. Analysis and design of microwave circuits and systems. Credit will be given for either ECE 421 or ECE 423, but not for both. Prerequisite: ECE 307.
(3-0-3) (P)

ECE 423
Microwave Circuits and Systems with Laboratory
Maxwell’s equations, waves in free space, metallic and dielectric waveguides, microstrips, microwave cavity resonators and components, ultra-high frequency generation and amplification. Analysis and design of microwave circuits and systems. Credit will be given for either ECE 421 or ECE 423, but not for both. Prerequisite: ECE 307.
(3-0-3) (P)(C)

ECE 425
Analysis and Design of Integrated Circuits
Contemporary analog and digital integrated circuit analysis and design techniques. Bipolar, CMOS and BICMOS IC fabrication technologies, IC Devices and Modeling, Analog ICs including multiple-transistor amplifiers, biasing circuits, active loads, reference circuits, output buffers; their frequency response, stability and feedback consideration. Digital ICs covering inverters, combinational logic gates, high-performance logic gates, sequential logic, memory and array structures. Team design projects. Prerequisites: ECE 312, senior standing.
(3-0-3) (P)

ECE 429
Introduction to VLSI Design
Processing, fabrication, and design of Very Large Scale Integration (VLSI) circuits. MOS transistor theory, VLSI processing, circuit layout, layout design rules, layout analysis, and performance estimation. The use of computer-aided design (CAD) tools for layout design, system design in VLSI, and application-specific integrated circuits (ASICs). In the laboratory, students create, analyze, and simulate a number of circuit layouts as design projects, culminating in a term design project. Prerequisites: ECE 218, ECE 311 and senior standing.
(3-0-3) (P)(C)

ECE 436
Digital Signal Processing I with Laboratory
Discrete-time system analysis, discrete convolution and correlation, Z-transforms. Realization and frequency response of discrete-time systems, properties of analog filters, IIR filter design, FIR filter design. Discrete Fourier Transforms. Applications of digital signal processing. Credit will be given for either ECE 436 or ECE 437, but not for both. Prerequisite: ECE 308.
(3-3-4) (P)(C)

ECE 437
Digital Signal Processing I
Discrete-time system analysis, discrete convolution and correlation, Z-transforms. Realization and frequency response of discrete-time systems, properties of analog filters, IIR filter design, FIR filter design. Discrete Fourier Transforms. Applications of digital signal processing. Credit will be given for either ECE 436 or ECE 437, but not for both. Prerequisite: ECE 308.
(3-0-3) (P)
ECE 438
Control Systems
Signal-flow graphs and block diagrams. Types of feedback control. Steady-state tracking error. Stability and Routh Hurwitz criterion. Transient response and time domain design via root locus methods. Frequency domain analysis and design using Bode and Nyquist methods. Introduction to state-variable descriptions. Credit will be given for either ECE 438 or ECE 434, but not for both. Prerequisite: ECE 308. (3-0-3) (P)

ECE 441
Microcomputers
Microprocessors and stored program controllers. Memories. Standard and special interfaces. Hardware design. Software development. Interrupt systems. Hardware and software design tools. System design and troubleshooting. Emphasis on examples. Prerequisites: ECE 218 or CS 470, ECE 242 or CS 350, and senior standing. (3-3-4) (P)(C)

ECE 446
Advanced Logic Design
Design and implementation of complex digital systems under practical design constraints. Timing and electrical considerations in combinational and sequential logic design. Digital system design using Algorithmic State Machine (ASM) diagrams. Design with modern logic families and programmable logic. Design-oriented laboratory stressing the use of programmable logic devices. Prerequisites: ECE 218, ECE 311, and senior standing. (3-3-4) (P)(C)

ECE 448
Mini/Micro Computer Programming
Engineering applications programming using the C language in a UNIX environment. Use of UNIX tools including filters and shell scripts. Overview of UNIX software design practices using tools such as Make and SCCS. The UNIX system interface. Software design projects. Credit for this course is not applicable to a B.S. CP.E. degree. Prerequisites: CS 116, ECE 242, or CS 350 and senior standing. (3-0-3) (P)

ECE 449
Object-Oriented Programming and Computer Simulation
The use of object-oriented programming to develop computer simulations of engineering problems. Programming with the C++ language in a UNIX environment. OOP concepts including classes, inheritance, and polymorphism. Programming with class libraries. Event-driven simulation techniques in an object-oriented environment. Programming projects will include the development of a simulator for an engineering application. Prerequisites: ECE 448, senior standing. (3-0-3) (P)

ECE 470
Photonics
An engineering-oriented treatment of optics and photonics, concentrating on optical design for communications and sensor systems. Electromagnetic theory of optics and its application to free-space and guided-wave optical systems; polarization states; optical components; fiber and integrated-optic waveguides; semiconductor sources and detectors; electro-optic and acousto-optic modulation techniques. Prerequisites: ECE 307, ECE 312. (3-0-3) (P)

ECE 481
Image Processing
Mathematical foundations of image processing, including two-dimensional discrete Fourier transforms, circular and block-circular matrices. Digital representation of images and basic color theory. Fundamentals and applications of image enhancement, restoration, reconstruction, compression, and recognition. Prerequisite: ECE 308. Corequisite: MATH 474. (3-0-3) (P)

ECE 485
Computer Organization and Design
This course covers basic concepts and state-of-the-art developments in computer architecture: computer technology, performance measures, instruction set design, computer arithmetic, controller and datapath design, memory systems, pipelining, array processing, parallel processing, multiprocessing, abstract analysis models, input-output systems, relationship between computer design and application requirements, and cost/performance tradeoffs. Students will complete a project implementing a version of multiple-cycle processor. Credit will be given for either ECE 485 or CS 470, but not for both. Prerequisites: ECE 218, ECE 242, and senior standing. (3-0-3) (P)

ECE 491
Undergraduate Research
Independent work on a research project supervised by a faculty member of the department. Prerequisites: Written consents of academic advisor and instructor. (Credit: 13 credit hours) (P)

ECE 494
Undergraduate Projects
Students undertake a project under the guidance of an ECE faculty member. Prerequisite: Approval of the ECE instructor and the ECE chair. (Credit: 14 credit hours) (P)

ECE 497
Special Problems
Design, development, analysis of advanced systems, circuits, or problems as defined by a faculty member of the department. Prerequisites: Written consent of academic advisor and instructor. (Credit: 1-3 credit hours) (P)

Special Note
ECE undergraduate students are not permitted to take any ECE courses via Internet, unless they have the written permission of the course instructor, their academic advisor, and the ECE chair. Any ECE undergraduate student wishing to take a graduate course for a degree program must have the written approval of the course instructor, faculty advisor, and the ECE department chair. Generally, a 3.5/4.0 major GPA is required for departmental approval.

ECE 502
Basic Network Theory

ECE 504
Wireless Communication System Design

ECE 505
Applied Optimization for Engineers

ECE 506
Analysis of Nonlinear Systems
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 509</td>
<td>Electromagnetic Field Theory</td>
</tr>
<tr>
<td>ECE 511</td>
<td>Analysis of Random Signals</td>
</tr>
<tr>
<td>ECE 513</td>
<td>Communication Engineering Fundamentals</td>
</tr>
<tr>
<td>ECE 514</td>
<td>Digital Communication Principles</td>
</tr>
<tr>
<td>ECE 515</td>
<td>Modern Digital Communications</td>
</tr>
<tr>
<td>ECE 519</td>
<td>Coding for Reliable Communications</td>
</tr>
<tr>
<td>ECE 521</td>
<td>Quantum Electronics</td>
</tr>
<tr>
<td>ECE 524</td>
<td>Electronic Circuit Design</td>
</tr>
<tr>
<td>ECE 525</td>
<td>RF Integrated Circuit Design</td>
</tr>
<tr>
<td>ECE 526</td>
<td>Active Filter Design</td>
</tr>
<tr>
<td>ECE 527</td>
<td>Performance Analysis of RF Integrated Circuits</td>
</tr>
<tr>
<td>ECE 529</td>
<td>Advanced VLSI Systems Design</td>
</tr>
<tr>
<td>ECE 531</td>
<td>Linear System Theory</td>
</tr>
<tr>
<td>ECE 535</td>
<td>Discrete Time Systems</td>
</tr>
<tr>
<td>ECE 537</td>
<td>Optimal Feedback Control</td>
</tr>
<tr>
<td>ECE 540</td>
<td>Reliability Theory and System Implemenation</td>
</tr>
<tr>
<td>ECE 541</td>
<td>Performance Evaluation of Computer and Communication Networks</td>
</tr>
<tr>
<td>ECE 542</td>
<td>Design and Optimization of Computer Networks</td>
</tr>
<tr>
<td>ECE 543</td>
<td>Computer Network Security</td>
</tr>
<tr>
<td>ECE 544</td>
<td>Wireless and Mobile Networks</td>
</tr>
<tr>
<td>ECE 545</td>
<td>Computer Communication Networks</td>
</tr>
<tr>
<td>ECE 546</td>
<td>Wireless Network Security</td>
</tr>
<tr>
<td>ECE 548</td>
<td>Energy Harvesting</td>
</tr>
<tr>
<td>ECE 549</td>
<td>Motion Control Systems Dynamics</td>
</tr>
<tr>
<td>ECE 550</td>
<td>Power Electronic Dynamics and Control</td>
</tr>
<tr>
<td>ECE 551</td>
<td>Advanced Power Electronics</td>
</tr>
<tr>
<td>ECE 552</td>
<td>Adjustable Speed Drives</td>
</tr>
<tr>
<td>ECE 553</td>
<td>Power System Planning</td>
</tr>
<tr>
<td>ECE 554</td>
<td>Power Systems Relaying</td>
</tr>
<tr>
<td>ECE 555</td>
<td>Power Market Operations</td>
</tr>
<tr>
<td>ECE 556</td>
<td>Power Market Economics and Security</td>
</tr>
<tr>
<td>ECE 557</td>
<td>Fault-Tolerant Power Systems</td>
</tr>
<tr>
<td>ECE 558</td>
<td>Power System Reliability</td>
</tr>
<tr>
<td>ECE 559</td>
<td>High Voltage Power Transmission</td>
</tr>
<tr>
<td>ECE 560</td>
<td>Power Systems Dynamics and Stability</td>
</tr>
<tr>
<td>ECE 561</td>
<td>Deregulated Power Systems</td>
</tr>
<tr>
<td>ECE 562</td>
<td>Power System Transaction Management</td>
</tr>
<tr>
<td>ECE 563</td>
<td>Computational Intelligence in Engineeriing</td>
</tr>
<tr>
<td>ECE 564</td>
<td>Control and Operation of Electric Power Systems</td>
</tr>
<tr>
<td>ECE 565</td>
<td>Computer Vision and Image Processing</td>
</tr>
<tr>
<td>ECE 566</td>
<td>Statistical Pattern Recognition</td>
</tr>
<tr>
<td>ECE 567</td>
<td>Statistical Signal Processing</td>
</tr>
<tr>
<td>ECE 568</td>
<td>Digital Speech Processing</td>
</tr>
<tr>
<td>ECE 569</td>
<td>Digital Signal Processing II</td>
</tr>
<tr>
<td>ECE 570</td>
<td>Fiber-Optic Communication Systems</td>
</tr>
<tr>
<td>ECE 571</td>
<td>Nanodevices and Technology</td>
</tr>
<tr>
<td>ECE 575</td>
<td>Electron Devices</td>
</tr>
</tbody>
</table>
Course Descriptions

ECE 576
Antenna Theory

ECE 578
Microwave Theory

ECE 583
High Speed Computer Arithmetic

ECE 584
VLSI Architectures for Signal Processing and Communications

ECE 585
Advanced Computer Architecture

ECE 586
Fault Detection in Digital Circuits

ECE 587
Hardware/Software Codesign

ECE 588
CAD Techniques for VLSI Design

ECE 589
Computer-Aided Design of Analog IC

ECON 423
Economic Analysis of Capital Investments
The evaluation of proposed capital investments in the public and private sectors. Equivalent worth, rate of return, and benefit/cost methods. Treatment of the time value of money, taxes, inflation, risk, inter-related investments, and capital budgeting. Credit for this course not applicable to a B.S.B.A. or a B.S.B.A.A.S. degree. Offered in fall and spring.
(3-0-3) (S)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

ECON 513
Macroeconomics in the Global Economy

ECON 570
Microeconomic Theory

ECON 571
Microeconomic Analysis

ECON 572
Macroeconomic Analysis

ECON 580
Econometric Analysis

Economics

ECON 151
The Economics of the Firm
The course looks at the consequences of scarcity on business behavior—the use of cost-benefit analysis, opportunity cost, and comparative advantage. It examines the influence of supply and demand on markets, and the influence of cost conditions and market structure on the behavior of the firm. The concept of economic efficiency is then used to examine government regulation of business.
(3-0-3) (S)(C)

ECON 152
National and Global Economics
The course looks at national and international statistics—real output, inflation, unemployment, and interest rates. It examines fiscal and monetary policy and how they influence the important measures of an economy's performance. Then the analysis is extended to the interaction between national economies and how this influences trade and capital flows between countries and determines exchange rates.
(3-0-3) (S)(C)(E)

ECON 211
Principles of Economics
The determination of output, employment, and the rate of inflation. Topics include a broad-based discussion of the controversies in macro-economics, the appropriate use of fiscal and monetary policy, the effects of a budget deficit, determination of the rate of exchange, and the trade deficit. Offered in fall and spring.
(3-0-3) (S)

Engineering Graphics

EG 105
Engineering Graphics and Design
Basic traditional and computer-based techniques and applications, multiview sketching, orthographic projection, isometric and oblique pictorials, sectioning, auxiliary views, principles of descriptive geometry, dimensioning, detail drawings, introduction to design and computer-aided drafting and design (CAD). Prerequisites: Trigonometry.
(1-2-2)

EG 204
Blueprint Reading for Machine Industries
Industrial prints, views of objects, analysis of edges and surfaces, sectional views, auxiliary views, screw threads and fasteners, dimensioning, shop processes, and welding representation.
(1-3-2)

EG 224
Blueprint Reading for Building Trades
Analysis of building construction drawings and details, dimensioning, shop processes, use of symbols and conventions, material takeoff, and elementary estimating.
(1-3-2)

EG 225
Engineering Graphics for Non-Engineers
Designed for students in business, liberal arts, and non-technical programs. Basic drafting techniques and applications, lettering, geometric constructions, charts and graphs, technical sketching, multiview projection, pictorial drawings, dimensioning, blueprint reading, and working drawings. Introduction to computer graphics. Credit for this course is not applicable to an engineering degree.
(2-1-3)
EG 305
Advanced Engineering Graphics and Design
Advanced study of auxiliary views and sectioning, gears andcams, threads and fasteners, working drawings, assemblydrawings, electronic drafting, ANSI drafting standards, and computer-aided drawing and design. Engineering design project. Prerequisite: EG 105.
(2-2-3)

EG 306
Engineering Descriptive Geometry
Graphic solutions of problems involving point, line, and plane relationships by auxiliary views and revolutions. Developments and intersections of surfaces. Parallelism and perpendicularity, vectors, mining and civil engineering problems. Shades and shadows, conics, map projection, and spherical triangles. Emphasis on those applications that promote visualization and introduce new engineering experience. Applications of computers to problem solving. Prerequisite: EG 105.
(2-2-3)

EG 308
Architectural Drawing I
Elements of architectural drafting. Lettering, symbols, plan layout, and elementary design in basic materials. Standard detailsof windows, doors, floors, roofs, stairs, framing. Perspective sketching. Prerequisite: EG 105 or consent of instructor.
(2-2-3)

EG 309
Architectural Drawing II
A continuation of EG 308, with more complicated layout problems of residential, small commercial, and industrial buildings. Detailed study of functions of the building. Methods of construction and use of materials and simple perspectives. Prerequisite: EG 308.
(2-2-3)

EG 310
Architectural Drawing III
Individual problems assigned to each student; each project developed from schematic plan through all stages of design, including sketches, working drawings, and presentation drawings; perspective drawing with rendering in all media. Prerequisite: EG 309.
(2-2-3)

EG 312
Architectural Freehand Drawing
Accurate and rapid sketching, with special emphasis on architectural forms, proportions, perspective; pencil, crayon, chalk, and brush techniques; simple composition problems. Prerequisite: EG 105 or consent of instructor.
(2-2-3)

EG 313
Architectural Detailing
Comprises design and drawing and the fitting together of various materials used in erecting and finishing contemporary and traditional buildings. Prerequisite: EG 309 or consent of instructor.
(2-2-3)

EG 325
Advanced Engineering Graphics for Non-Engineers
Continuation of EG 225. Threads and fasteners, sectioning and auxiliary views, limit dimensioning, detail and assembly drawings, data representation, principles of descriptive geometry, manufacturing processes, and computer graphics/CAD. Credit for this course is not applicable to an engineering degree. Prerequisite: EG 225.
(2-1-3)

EG 329
Graphic Representation for Non-Engineers
Basic techniques of graphics applied to communications and report writing. Use of computer graphics to generate charts and graphs including two- and three-dimensional line charts and pie charts. Integration of graphical presentations into technical and business reports. Credit for this course is not applicable to an engineering degree. Prerequisite: EG 225.
(3-0-3)

EG 405
Mechanical Design Graphics
Basic concepts of mechanical design and analysis. Advanced design layouts, details, assemblies, tolerance systems, surface finish control, materials, processes, ANSI drafting standards, engineering design processes, systems and procedures, application of computers to design, and CAD/CAM. Prerequisite: EG 305.
(2-2-3)

EG 406
Technical and Pictorial Illustration
(2-2-3)

EG 409
Computer-Generated Pictorial Projections
Study of computer-generated representations of three dimensional objects. Projections include multiview, perspective, axonometric, and oblique. Prerequisites: EG 406.
(2-2-3)

EG 419
Computer Graphics in Engineering
Techniques of computer-aided design and computer-aided manufacturing. Study of various computer graphic hardware and software systems through demonstrations and use. Prerequisites: EG 105 and junior standing or consent of instructor.
(2-2-3)

EG 425
Computer Graphics for Non-Engineers
Principles and applications of computer graphics in business and nontechnical fields. Study of computer graphics hardware and software systems. Use of computer in producing charts, graphs, and technical drawings. Use of PC-CAD in problem solving and design. Credit for this course is not applicable to an engineering degree. Prerequisite: EG 325.
(2-1-3)
Course Descriptions

EG 429
Computer Graphics for Desktop Publishing
Integration of computer graphic-generated images into technical and business reports produced with popular desktop publishing software. Emphasis on creation and selection of graphical presentations for optimum readability. Scanning and retouching techniques for two- and three-dimensional presentations. Introduction to multi-media and slide presentations. Credit for this course is not applicable to an engineering degree. Prerequisite: EG 329. (2-2-3)

Environmental Engineering
ENVE 310
Introduction to Environmental Engineering
Principles and applications of engineering processes for air and water pollution control. Topics include environmental resource management, air and water quality indices, and pollutant sources, effect, and controls. (3-0-3)
ENVE 404
Water and Wastewater Engineering
Principles and applications of physical, chemical, and biological processes for water and waste purification. Design of engineering treatment systems to meet water quality and effluent standards. Prerequisite: Junior Standing (3-0-3)
ENVE 426
Statistical Tools for Engineers
Descriptive statistics and graphs, probability distributions, random sampling, independence, significance tests, design of experiments, regression, time-series analysis, statistical process control, and introduction to multivariate analysis. Prerequisite: Junior standing. (3-0-3)
ENVE 463
Introduction to Air Pollution Control
Air pollution sources and characteristics of source emissions, atmospheric reactions, effects of pollutants, and techniques of emission control; legal and administrative aspects of air pollution control. (3-0-3)
ENVE 481
Hazardous Waste Engineering
Engineering principles applied to the control of hazardous waste generation, handling, collection, transport, processing, recovery, and disposal. Treatability and design of hazardous waste treatment processes. Corequisites: ENVE 404, ENVE 463. (2-3-3) (C)
ENVE 485
Industrial Ecology
Industrial Ecology is the study of how to manage human activity on a sustainable basis. It is an interdisciplinary field involving technology (science and engineering), public policy and regulatory issues, and business administration. The overall goal of this course is to promote creative and comprehensive problem-solving through the application of Industrial Ecology tools such as Industrial Metabolism, Input-Output Analysis, Life Cycle Assessment, Accounting, and Design for the Environment. Same as EM 507. (3-0-3)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.
ENVE 501
Environmental Chemistry
ENVE 503
Water and Wastewater Analysis
ENVE 506
Chemodynamics
ENVE 513
Biological Processes in Wastewater Treatment
ENVE 545
Environmental Regulations and Risk Assessment
ENVE 570
Air Pollution Meteorology
ENVE 572
Ambient Air Monitoring
ENVE 576
Indoor Air Pollution
ENVE 585
Groundwater Contamination and Pollutant Transport

History
Note:
All History courses require the completion of HUM 102, 104, or 106.
HIST 300
World History to 1500
Development of Greek and Roman civilization; beginnings of Christianity; Europe in the Middle Ages; feudalism and manorialism; organization of the Church; the Crusades; medieval intellectual life; the Renaissance. (3-0-3) (H)(C)
HIST 301
World History from 1500
Protestant Reformation; the Scientific Revolution; Age of Louis XIV; Enlightenment; the Age of Democratic Revolution; Industrial Revolution; Nationalism and Imperialism; World War I; Communism and Fascism; World War II and after. (3-0-3) (H)(C)
HIST 305
Latin America: 1810–Present
The history of Latin America from colonial times emphasizing the political evolution of the several republics. Special consideration will be given to the political, economic, military, and social relations of the U.S. with Latin American countries in the 20th century. (3-0-3) (H)(C)
HIST 307
History of Latin American Cinema
An overview of the historical development of Latin American film, from early to contemporary films, along with a study of the methods of critical inquiry developed to analyze film and cultural and political history in Latin America. This course provides differing visions of Latin America history as constructed through film. We analyze some of the major films of Latin American cinema with a view to the characteristic marks of this cinema, its aesthetic, major themes, the various ways that it impacts political, social, and cultural systems and how social-political changes in turn impact the production and politics of film. Films will be in Spanish and English subtitles.
(3-0-3) (H)(C)

HIST 332
American Women 1840–1990
An examination of how women shaped the course of U.S. history and of how key political and social events shaped their lives. Since no single experience conveys the history of all American women, this course will discuss the diverse realities of women of different races, classes, ethnicities, and political tendencies. It looks at how and why the conditions, representations, and identities of women changed or remained the same. By incorporating women into our vision of history, we develop a more complete understanding of our past.
(3-0-3) (H)(C)

HIST 333
Ethnicity in American History and Life
Examines the creation of the American nationality from its diverse roots, which include almost all the world’s great cultures. Special stress on immigration, African American history, and the relationships among concepts of race, class, and gender.
(3-0-3) (H)(C)

HIST 334
The Creation of America: The New World to 1789
Examines how the U.S., its values, and its institutions came to be. Colonization, “Indian” relations, slavery, the American Revolution, and the Constitution are studied in the context of the colonial world, including Latin America. Controversial issues and the challenge of discovery are stressed.
(3-0-3) (H)(C)

HIST 336
The Industrialization of America: 1789–1898
Traces America’s transformation from agrarian republic to Industrial Empire. Stresses impact of industrialization on all aspects of life, the nature of slavery, the failures of “Reconstruction,” and the western and urban frontiers. Explores the adventures that made America a great power.
(3-0-3) (H)(C)

HIST 337
The American Century: 1898–1975
Traces how America attained economic and military power and what it did with that power at home and abroad. Discusses the World Wars, the Great Depression, the limits of the “welfare state,” the movement for Black equality, and the transformations of the 1960s.
(3-0-3) (H)(C)

HIST 338
Contemporary America: 1960 and After
Explores the historical roots of contemporary issues. Topics vary by semester but always include the Cold War and America’s international position, tensions over immigration and racial integration, and the historic roots of changes in popular culture and daily life.
(3-0-3) (H)(C)

HIST 340
Rise of Global Economy
A historical analysis of contemporary globalization in trade, technology, labor, and culture. The course includes a comparative analysis of the world’s leading economies (e.g. Great Britain, Germany, United States, and Japan) and considers their varied responses to industrial revolutions in the past two centuries.
(3-0-3) (H)(C)

HIST 343
Islam in the Modern Era
This course will examine the philosophical, theological, and legal roots of Islam from Mohammed to the present. We will focus on what it means to be Islamic in the Middle East, what it means to practice Islam in a Western culture, and the ways in which individuals who practice Islam are affected by Western ideology: both theological (i.e. Judeo-Christian) ideations as well as Western notions of civil liberties dating as far back as the Magna Carta and even to First Century Roman Law.
(3-0-3) (H)(C)

HIST 345
Women and the World: 20th Century
This course examines how women in different regions of the world have helped to shape their nation’s society and history. It also explores the connections and/or lack of connections between women, women’s movements, and key political events during the twentieth century. The course will both draw some general themes and look at some specific case studies.
(3-0-3) (H)(C)

HIST 349
African-American Experience
A study of the African-American experience since 1800, including African roots, formal and informal institutions of oppression, change in continuity in folk culture, and history of social institutions.
(3-0-3) (H)(C)

HIST 350
U.S. Urban History
Basic facts and issues of U.S. urban history; reasons for the growth, development and decay of cities; origins of contemporary urban political, social, and economic problems.
(3-0-3) (H)(C)

HIST 352
History of Chicago
Basic institutions of the contemporary city studied in their historical context, using Chicago as a case study. Political machines, social and political reform traditions, planning agencies, ethnic neighborhoods, organized crime, and many other urban institutions.
(3-0-3) (H)(C)
HIST 361
The Atomic Age
A historical inquiry into the development of nuclear energy, its military uses, policy formation, and the attendant problems. Topics included: Manhattan Project, decision to use the bomb, legislation, AEC, arms race, testing, fallout, civil defense, disarmament efforts, foreign programs, espionage. This upper level course is reading intensive. Students are expected to read the required materials for discussion. A mid-term and final examination will assess student understanding of the nuclear issues. A research paper on an approved topic will comprise the remainder of requirements. There are also several films included for this class. (3-0-3) (H)(C)

HIST 372
History of Engineering
Examines the birth and evolution of professional engineering. Topics include engineering education, professional standards, industrial and government contexts, distinctive modes of thinking, and engineering in popular culture. (3-0-3) (H)(C)

HIST 375
History of Computing
This course addresses the question “How do technologies change the world?” through examining the history of computing. Readings and discussions on the people, technologies, ideas, and institutions of modern computing; and the uses of computers in computation, control, simulation, communication, and recreation. We will learn about hardware heavyweights, software moguls, and where the World Wide Web came from. (3-0-3) (H)(C)

HIST 380
Topics in History
An investigation into a topic of current or enduring interest in history, which will be announced by the instructor when the course is scheduled. (3-0-3) (H)(C)

HIST 381
Science in Industrial Society: 1750–1900
The transformation of the physical and biological sciences from the Enlightenment to the 20th Century and its effects on culture, politics, and belief; the creation of science-based technologies and the creation of the profession of scientist. (3-0-3) (H)(C)

HIST 382
Technology in History: 1500–1850
Explores the process of technological change during the birth of industrial societies. Considers the context of early industrial development in Europe, then examines the industrial revolution in Britain and America. Concludes by assessing technology’s role in European domination of Asia and Africa. (3-0-3) (H)(C)

HIST 383
Technology in History: 1850 to Present
Examines technological change as a characteristic activity of modern societies. Investigates the science-based “second” Industrial Revolution in Europe and America. Explores the varied responses of artists, writers, architects, and philosophers to the machine age. Concludes by discussing technology’s place in the modern nation-state. (3-0-3) (H)(C)

HIST 384
Science in the Twentieth Century
Development of quantum theory, relativity, and molecular biology; the growth of science to its present important position in government, economic life, and technological development. (3-0-3) (H)(C)

HIST 385
The Origins of Modern Science
An examination of the profound change in our conception of the natural world from Copernicus (1500 A.D.) to Newton (1700 A.D.); how the adoption of experimentation, quantification, and new instruments created a new conception of scientific method; and the goals and nature of scientific knowledge. (3-0-3) (H)(C)

HIST 387
History of 20th Century Medical Technology: Artificial Organs I
Students will be provided an opportunity to explore a unique aspect of 20th century medical technology. The complex nature of medical technological development crosses the scientific, engineering, political, economic, and clinical boundaries. This focused examination provides a historic setting to better understand the inter-disciplinary nature of the medical and scientific communities in the 20th century. Historic critical analysis encompasses the clinical, scientific bases, and technical components of audiology technology and cochlear implants, joint replacement and prostheses, corneal/retinal replacements and artificial eyes, and cardiac pacemakers. The class is based on the literature contained in many specialty journals that commonly include historic, biographical, and autobiographical articles written largely in non-technical terms. Physiological explanation is provided in class. (3-0-3)

HIST 491
Independent Reading and Research
For advanced students. Prerequisite: Consent of department. (Credit: Variable) (H)(C)

Humanities

HUM 102
Industrial Culture
An interdisciplinary course that examines the development of modern industrial society and the impact of science and technology on our culture. Readings drawn from history, literature, and philosophy. Prerequisite: Satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H)(C)

HUM 104
Age of Darwin
An introduction to the humanities through an investigation of important changes in our culture associated with Darwin’s theory of evolution. Readings drawn from literature, philosophy, and science. Prerequisite: Satisfaction of IIT’s Basic Writing Proficiency Requirement. (3-0-3) (H)(C)
Industrial Technology and Management – Center for Professional Development

INTM 301 Communications for the Workplace
Review, analyze, and practice verbal and written communication formats found in the workplace. Emphasis is on developing skills in technical writing, oral presentations, business correspondence, and interpersonal communication using electronic and traditional media. Credit not granted for both INTM 301 and COM 421.
(3-0-3) (C)

INTM 305 Advances in Information Technology
Management in an industrial environment now requires a fundamental understanding of information technology. Topics addressed are relevant to planning, operations, and control of information technology, including converging network deployments, wireless applications, data modeling, production modeling, security, and the impact of e-commerce. Computer exercises are included.
(3-0-3)

INTM 311 Production and Operations
Introduces industrial engineering concepts and prepares the student to perform fundamental industrial engineering tasks. These include design of work standards, human factors, work groups, layout and equipment selection, and justification.
(3-0-3)

INTM 314 Maintenance Technology and Management
Maintenance of facilities is a major concern for all industrial operations. Course covers technologies involved as well as the management aspects of maintaining buildings, construction and equipment installation, and maintenance for all types of operations.
(3-0-3)

INTM 315 Industrial Enterprises
This course provides an introduction to the world of industrial enterprises. The world-wide evolution of business will be considered leading to today’s competitive world. The range of industrial activities is reviewed, and students are introduced to the organization and purpose of various industrial sectors.
(3-0-3)

INTM 319 Electronics in Industry
Basic overview of electrical and electronic technology in industry. Emphasis on electrical and electronic components, industrial devices, electrical theory, application, and basic troubleshooting. Students select and complete an electrical or electronic class project.
(3-0-3)

INTM 322 Industrial Project Management
This course will teach the techniques for managing projects and programs of all types. Coverage includes organization and operation of the project team. Techniques for managing and tracking projects will be covered along with the computerized tools available for project management.
(3-0-3)

INTM 323 Industrial Management and Planning
This course introduces students to various concepts of management, specifically as applicable to industrial companies. Management of people and organizations will be discussed, as well as concepts of forecasting and strategic planning.
(3-0-3) (C)

INTM 332 Systems Safety
Safety represents a major challenge for all industrial operations. This course covers human factor approaches along with the systems analyses required to implement safety systems in the workplace. Rules and regulations applying to safety will be considered.
(3-0-3)

INTM 340 Industrial Logistics
Basic principles of transportation, distribution, and logistics (TDL) in both the private and public sectors. TDL activities are the infrastructure that supports the overall economy, including the retail, service, and construction sectors. TDL is also an integral aspect of the internal operations of all businesses. Topics covered include regulations, costs, and software, as well as the interaction of TDL functions with the overall enterprise.
(3-0-3) (C)

INTM 404 Sales, Marketing, and Product Introduction
Covers techniques of marketing research, strategies for new product introduction, and sales management and planning.
(3-0-3) (C)

INTM 406 Quality Control in Manufacturing
Topics include quality control based on metrology and overall quality control systems. Metrological techniques covered include mechanical, electrical, materials, and chemical perspectives. Such QC issues as SPC, ISO 9000, MilSpec, and TQM are examined. Emphasis is on exploring options and consequences of selecting appropriate methodologies.
(3-0-3)
INTM 407
Construction Technology
Introduces the full range of technologies involved in construction of both new and modified facilities, including steel, concrete, and timber construction as well as supporting specialties such as HVAC, electrical, plumbing, etc. The interaction between the various construction trades will be covered along with the role of the architects and engineers.
(3-0-3)

INTM 408
Cost Management
Accounting basics are introduced with primary emphasis on the costing and estimating procedures as used in industry. The objective of this course is to provide a good understanding of financial activities and hands-on experience in working with a variety of costing and accounting systems.
(3-0-3)

INTM 409
Inventory Control
Fundamentals of inventory control including inventory classifications, i.e. raw materials, work-in-process (WIP), and finished goods. Topics include inventory record keeping, inventory turnover, the 80/20 (or ABC) approach, external and internal lead times, excess/obsolete inventory, and inventory controls. Material Resource Planning (MRP) and Enterprise Resource Planning (ERP) are included.
(3-0-3) (C)

INTM 410
Manufacturing Processes
Process areas studied include metals, plastics, and electronics manufacturing. Key processes in each of these industries are explored, with particular consideration given to interactions between materials and processes, as well as related design issues.
(3-0-3)

INTM 411
Facilities and Construction Management
Students learn about management of existing facilities including routine service and maintenance activities. Tools and techniques for managing new construction and renovation projects are covered, as well as organizational structures and management approaches for these activities.
(3-0-3)

INTM 412
Topics in Industry
An investigation into a topic of current interest in industry determined by the instructor.
(3-0-3)

INTM 413
Advanced Project Management
This course covers project management in the PMP framework and provides a structured approach to managing projects using Microsoft Project and Excel. Coverage includes creation of key project management charts (Gantt, Pert, CPM, timelines, and resource utilization), basic statistics used in estimating task times, critical path generation in Excel and Project, project cost justification in Excel, SPC and acceptance sampling for machine acceptance, project analysis via simulation, and management of personnel, teams, subcontractors, and vendors. Case studies are utilized to demonstrate core concepts and dynamic scheduling.
(3-0-3)

INTM 414
E-Commerce
This course reviews electronic commerce and its role in industrial organizations. Topics include a history of e-commerce, business-to-business (B2B) models, and business-to-consumer (B2C) models. The impact of this paradigm shift on all aspects of business is also covered.
(3-0-3) (C)
INTM 430
Transportation
This course covers transportation practices and strategies for the 21st century. The role and importance of transportation in the economy and its relationship to the supply chain will be covered in detail. Transportation modes - truck, rail, air, and water - will be examined for both domestic and global transportation. Security issues in domestic and international transportation will be part of the course. Lecturers with years of practical transportation experience in the corporate world will provide students with their perspective on the role of transportation in today's economy.
(3-0-3)

INTM 432
Vendor/Customer Relations
Relations with customers and vendors constitute a critical aspect of company profitability. The course pursues such topics as appropriate involvement of customers and vendors in product development, as well as price and contract negotiations.
(3-0-3) (C)

INTM 434
Industrial Futures
This course allows a futuristic view of industrial establishments of interest to the student and INTM staff, who must work to develop individual or group project.
(3-0-3) (C)

INTM 441
Supply Chain Management
This course covers the full range of activities involved in the supply chain. This includes management tools for optimizing of supply chains, relationships with other parts of the organization, in-house versus third party approaches, and suitable performance measurements. Topics covered include: Warehouse Management Systems (WMS), Transportation Management Systems (TMS), Advanced Planning and Scheduling Systems (APS), as well as cost benefit analysis to determine the most appropriate approach.
(3-0-3) (C)

INTM 442
Warehousing and Distribution
This course covers warehouse layout and usage based on product requirements such as refrigeration, hazardous material, staging area, and value added activities. Processes covered include receiving, put-away, replenishment, picking, and packing. The requirement for multiple trailer/rail car loading and unloading is considered as well as equipment needed for loading, unloading, and storage. Computer systems for managing the operations are reviewed. Emphasis is on material handling from warehouse arrival through warehouse departure.
(3-0-3) (C)

INTM 443
Purchasing
Purchasing responsibilities, processes, and procedures are included. Topics covered include: supplier selection and administration, qualification of new suppliers, preparing purchase orders, negotiating price and delivery, strategic customer/vendor relationships, and resolution of problems. All aspects of Supplier Relation Management (SRM) are covered.
(3-0-3) (C)

INTM 444
Export/Import Management
Internationalization of industry requires special expertise and knowledge, which must be taken into consideration throughout all interactions with overseas companies either as customers or suppliers. Topics covered include custom clearance, bonded shipping, international shipping options, import financing and letters of credit, customer regulations, insurance, import duties and trade restrictions, exchange rates, and dealing with different cultures.
(3-0-3) (C)

INTM 460
The Carbon Economy
The worldwide status of the carbon economy is covered. Oil, natural gas, and coal are the primary energy resources being used today. Additionally, these same resources are key resources for the chemical industry. Technological as well as management and organizational limitations will be covered. The course will review these worldwide resources with particular attention to anticipated supplies and usage over the next few decades based on various technological/business approaches.
(3-0-3) (C)

INTM 461
Energy Options for Industry
Carbon-based fuels are a limited resource and within decades will be in very short supply. Associated energy costs will increase and industry will be required to incorporate fuels and/or power sources, such as uranium (for nuclear power), hydroelectric, geothermal, wind, wave, solar, etc. This course presents such energy options and explores the anticipated impact on industry.
(3-0-3)

INTM 477
Entrepreneurship in Industry
This course is available to all students interested in manufacturing and the activities that support manufacturing including logistics, business, facilities, and engineering. The emphasis will be on the role of entrepreneurship in existing manufacturing and related industries as well as in start-up companies. Since manufacturing and related industrial activities represent over 30% of the economy, the economic future of the nation depends on the health of this sector. The objective of this course is to provide the skills to the students to introduce innovation and entrepreneurship in manufacturing and the industry that supports it.
(3-0-3)
Course Descriptions

Interprofessional Projects

IPRO 497
Interprofessional Project (IPRO)
Interprofessional projects allow students to learn teamwork, leadership, and project management skills, while working in multidisciplinary teams on projects involving technical, ethical, environmental, economic, public policy, and legal issues. IPRO project teams are typically comprised of 10-12 students from sophomore through graduate level and from all disciplines that can contribute to a project. Every effort will be made to accommodate students’ first choices; however, it may be necessary to balance students across all projects scheduled for the semester or to consolidate students into fewer projects to meet minimum team requirements. Specific rules about selection of IPRO projects may apply to certain degree programs. Some projects may carry Humanities or Social Sciences credit. Students must consult the lead faculty member for the project and their faculty advisor before registering for a project. (1-6-3) (C)

Information Technology and Management – Center for Professional Development

ITM 300
Communication in the Workplace
Review, analyse, and practice verbal and written communication formats found in the workplace. Emphasis on developing skills in technical writing and oral presentations using electronic and traditional media. Credit not granted for both ITM 300 and COM 421; ITM 301 may be substituted for this course. (3-0-3) (C)

ITM 301
Introduction to Contemporary Operating Systems and Hardware I
Students study the basics of computer architecture and learn to use a contemporary operating system. Hardware requirements, microcomputer components, software compatibility and system installation and options are covered, along with post-installation topics, storage, security, and system diagnosis, and repair. (2-2-3)

ITM 302
Introduction to Contemporary Operating Systems II
Introduces features of an advanced operating system, including basic commands, file and directory manipulation, text editing, and suitability for server applications. Basic programming in this environment will be addressed through shell scripting for job automation along with shell built-in data types, condition, loops, functions, and regular expressions. (2-2-3)

ITM 311
Introduction to Software Development
A broad introduction to object-oriented programming and the related knowledge necessary to program in a contemporary programming language. This would include coverage of an Application Development Kit, creating stand-alone applications and applets for enhancing web pages. (2-2-3)

ITM 412
Introduction to Systems Software Programming
Introduces basic concepts of systems programming. Students learn to apply basic programming concepts toward solving problems, create source files and header files, work with and effectively use basic data types, compile source code into binary executable files, and understand use of the “make” utility for project management. (2-2-3)

ITM 411
Intermediate Software Development
This course covers a broad spectrum of object-oriented programming concepts and application programming interfaces. The student considers the details of object-oriented development in topics of multi-threading, data structure collections, stream I/O, and client interfaces. Software engineering topics of packaging and deployment are covered as well. Hands-on exercises reinforce concepts taught throughout the course. Prerequisite: ITM 311. (2-2-3)

ITM 412
Advanced Structured and Systems Programming
Structured programming continues with advanced concepts including strings, arrays, pointers, data structures, file manipulation, and dynamic memory management. Students create more complex applications that work with user input, manipulate user supplied text or text obtained from a file, apply standard library routines for working with literal text, use pointers to store complex structures within arrays, and read and write data from files, the console, and the terminal. The object-oriented programming (OOP) paradigm is covered in depth including the philosophy of OOP, classes and objects, inheritance, template classes, and making use of class libraries. Prerequisite: ITM 312. (2-2-3)

ITM 414
Visual Programming Environments
Students will study the fundamental problems associated with man-machine interfaces. Students will learn to apply several GUI techniques to design, lay out, and implement screen controls, menus, and graphical objects using techniques such as logic flow and input validation. GUI programming elements of contemporary visual programming languages are introduced. Prerequisite: ITM 311 or ITM 312. (2-2-3)

ITM 415
Advanced Software Development
This course considers Web container application development for enterprise systems. The primary focus is on database connectivity (JDBC) integration with Web application programming using an enterprise-level application framework. A Web application term project considers the design and implementation of a database instance that serves as the information tier in a contemporary 3-tier enterprise solution. Prerequisite: ITM 411. (2-2-3)

ITM 421
Data Modeling and Applications
Basic data modeling concepts are introduced. Hands-on database design, implementation, and administration of single-user and shared multi-user database applications using a contemporary relational database management system. (2-2-3)
ITM 422
Advanced Database Management
Advanced topics in database management and programming including client server application development are introduced. Expands knowledge of data modeling concepts and introduces object-oriented data modeling techniques. Students will learn the use of Structured Query Language in a variety of application and operating system environments. Prerequisite: ITM 421.
(3-0-3) (C)

ITM 423
Advanced Database Management II
Students will learn how to design and develop Client/Server database applications for various business solutions, incorporating Client/Server application design. Business system planning, analysis, development, and implementation are discussed. Students will learn how to design event-driven applications utilizing application management tools as well as use of graphical user interface design to create user-friendly applications. Prerequisites: ITM 422
(3-0-3) (C)

ITM 428
Database Security
Students will engage in an in-depth examination of topics in data security including security considerations in applications & systems development, encryption methods, cryptography law, and security architecture & models. Prerequisite: ITM 421.
(3-0-3)

ITM 440
Introduction to Data Networks and the Internet
This course covers current and evolving data network technologies, protocols, network components, and the networks that use them, focusing on the Internet and related LANs. The state of worldwide networking and its evolution will be discussed. This course covers the Internet architecture, organization, and protocols including Ethernet, 802.11, routing, the TCP/UDP/IP suite, DNS, SNMP, DHCP, and more. Students will be presented with Internet-specific networking tools for searching, testing, debugging, and configuring networks and network-connected host computers. There will be opportunities for network configuration and hands-on use of tools.
(2-2-3)

ITM 441
Network Applications and Operations
Students learn the details, use, and configuration of network applications. Currently protocols and application technologies considered include SNMP, SMTP, IMAP, POP, MIME, BOOTP, DHCP, SAMBA/NFS, AFP, X, HTTP, DNS, Net-BIOS, and CIFS/SMB. Windows 2000 work-groups and domains: file and printer sharing, remote access, and the Windows Network Neighborhood are addressed. Prerequisite: ITM 440.
(2-2-3)

ITM 448
System and Network Security
Prepares students for a role as a network security analyst and administrator. Topics include viruses, worms, other attack mechanisms, vulnerabilities and countermeasures, network security protocols, encryption, identity and authentication, scanning, firewalls, security tools, and organizations addressing security. A key component of this course is a self-contained team project. Prerequisite: ITM 440.
(2-2-3) (C)

ITM 451
Distributed Workstation System Administration
Students learn to set up and maintain PC workstations and servers to administer PC servers and networks. Topics include hardware requirements; software compatibility; and system installation, configuration and options and post-installation topics; administrative practices required for file system security; process management; performance monitoring and tuning; storage management; back-up and restoration of data; and disaster recovery and prevention. Prerequisite: ITM 301.
(4-4-6)

ITM 452
Client-Server System Administration
Students learn to setup and configure a contemporary operating system, including the actual installation of the operating system on the student workstation in a networked client-server environment. User account management, security, printing, disk configuration, and backup procedures are addressed, with particular attention to coverage of TCP/IP and TCP/IP applications. System installation, configuration, and administration issues as well as network file systems, network access, and compatibility with other operating systems are also addressed. Prerequisite: ITM 302.
(4-4-6)

ITM 454
Operating System Virtualization
This course will cover technologies allowing multiple instances of operating systems to be run on a single physical system. Concepts addressed will include hypervisors, virtual machines, paravirtualization, and virtual appliances. Both server and desktop virtualization will be examined in detail, with brief coverage of storage virtualization and application virtualization. Business benefits, business cases, and security implications of virtualization will be discussed. Extensive hands-on assignments and a group project will allow students to gain first-hand experience of this technology. Prerequisite: ITM 301 or ITM 302 or instructor permission.
(2-2-3)

ITM 455
Introduction to Open Source Operating Systems
Students learn to set up and configure an industry-standard open source operating system, including the actual installation of the operating system on the student workstation. Also addressed are applications and graphical user interfaces as well as support issues for open source software. Prerequisite: ITM 302 or permission of instructor.
(2-2-3)

ITM 458
Operating System Security
This course will address theoretical concepts of operating system security, security architectures of current operating systems, and details of security implementation using best practices to configure operating systems to industry security standards. Server configuration, system-level firewalls, file system security, logging, anti-virus and anti-spyware measures, and other operating system security strategies will be examined. Prerequisite: ITM 301 or ITM 302.
(2-2-3)
ITM 460
Fundamentals of Multimedia

Students are introduced to computer-based multimedia theory, concepts, and applications. Topics include desktop publishing, hypermedia, presentation graphics, graphic images, animation, sound, video, multimedia on the World Wide Web, and integrated multimedia authoring techniques.
(2-2-3) (C)

ITM 461
Internet Technologies & Web Design

This course will cover how the Internet is organized, addressing, routing, DNS, protocols, TCP/IP, SMTP, the use of Internet applications, and the creation of Web pages using HTML and graphical applications. Networked multimedia distribution technologies are also explored. The design of effective Web site including page layout, user interface design, graphic design, content flow, and site structure as well as management of Web site resources including intranet management and design considerations are addressed. Students design and create a major Web site with multiple pages and cross-linked structures.
(2-2-3) (C)

ITM 462
Web Site Application Development

Programming the Common Gateway Interface (CGI) for Web pages is introduced with emphasis on creation of interfaces to handle HTML form data. CGI programming is taught in multiple languages. Security of Web sites is covered with an emphasis on controlled access sites. Setup, administration, and customization of content management systems including blog and portal sites is introduced. Students design and create a Web site including basic CGI programs with Web interfaces and process data flows from online forms with basic database structures. Prerequisite: ITM 461.
(2-2-3) (C)

ITM 463
Internet Application Development

In-depth examination of the concepts involved in the development of Internet applications. Students will learn the differences and similarities between Internet applications and traditional client/server applications. A discussion of the technologies involved in creating these Internet applications is included, and students will learn to use these technologies to create robust server-side applications. Also addressed is the role of the Application Service Provider (ASP) in enterprise information technology management. Prerequisites: ITM 461, ITM 411.
(2-2-3)

ITM 465
Dynamic Web Page Development

Students will learn the W3C and major vendors’ Document Object Models (DOM) and how to use scripting syntax and techniques to make use of the DOM in the preparation of dynamic web pages. The role of Cascading Style Sheets in dynamic pages will also be covered in detail. Prerequisite: ITM 461.
(2-2-3)

ITM 466
XML Technologies and Web Services

The course is a broad survey of XML and Web Services technologies. The student considers these technologies in the development of narrative-centric and data-centric applications within an open-standard, message-based enterprise framework. Web feeds, aggregators, mashups, and XML application servers are also treated. A final project will consider best practices in utilizing XML technologies and Web services for enterprise Web applications. Prerequisites: ITM 411 and ITM 461.
(3-0-3)

ITM 471
Project Management for Information Technology

Basic principles of project management are taught with a particular focus on project planning for information technology hardware, software, and networking project implementation. Management of application development and major Web development projects will also be addressed.
(3-0-3) (C)

ITM 478
Information System Security Management

In-depth examination of topics in the management of information technology security including access control systems and methodology, business continuity and disaster recovery planning, legal issues in information system security, ethics, computer operations security, physical security, and security architecture and models using current standards and models.
(3-0-3) (C)

ITM 491
Undergraduate Research

Prerequisite: written consent of instructor.
(Credit: variable)

ITM 492
Embedded Systems & Reconfigurable Logic Design

This course covers embedded system design fundamentals. Working with various microcontrollers, microprocessors, and DSPs, the student will discover hardware, software, and firmware design trade-offs, tool chains, and best practices in current embedded systems development. Laboratory exercises and experience reinforce the lecture concepts. A course project encapsulates all topics culminating in an embedded system designed and implemented from the ground up. The student should be familiar with analog and digital design methods, computer architecture, and structured/procedural programming techniques. Prerequisite: Knowledge of digital logic and C or consent of instructor.
(4-4-6)

ITM 495
Topics in Information Technology

This course will cover a particular topic, varying from semester to semester, in which there is particular student or staff interest. Prerequisite: consent of instructor
(Credit: variable) (C)

GRADUATE COURSES

Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

ITM 511
Application Development Methodologies

ITM 518
Coding Security
Course Descriptions

- **ITM 521**
 Client/Server Technologies and Applications

- **ITM 526**
 Data Warehousing

- **ITM 527**
 Data Financials

- **ITM 531**
 Object-Oriented System Analysis, Modeling, and Design

- **ITM 532**
 UML Based Software Development

- **ITM 533**
 Operating System Design Implementation

- **ITM 534**
 Human Computer Interaction

- **ITM 535**
 Systems Architectures

- **ITM 537**
 Instructional Technologies

- **ITM 539**
 Steganography

- **ITM 542**
 Wireless Technologies and Applications

- **ITM 543**
 Vulnerability Analysis and Control

- **ITM 545**
 Telecommunications Technology

- **ITM 546**
 Telecommunications Over Data Networks

- **ITM 547**
 Telecommunications Over Data Networks: Projects & Advanced Methods

- **ITM 549**
 System and Network Security: Projects and Advanced Methods

- **ITM 555**
 Handheld Device Technologies

- **ITM 564**
 Electronic Commerce Applications and Management

- **ITM 566**
 Service-Oriented Architecture and Enterprise Service Business

- **ITM 567**
 Enterprise Web Application Development

- **ITM 572**
 Process Engineering for Information Technology Managers

- **ITM 573**
 Building and Leading Effective Teams

- **ITM 574**
 Strategic Information Technology Management

- **ITM 575**
 Networking and Telecommunications Management

- **ITM 581**
 ITM Entrepreneurship

- **ITM 582**
 Business Innovation

- **ITM 585**
 Legal and Ethical Issues in Information Technology

- **ITM 588**
 Incident Response, Disaster Recovery, and Business Community

- **ITM 593**
 Embedded Systems

Literature

Note: All literature courses require as a prerequisite the completion of HUM 102, 104, or 106.

- **LIT 306**
 Science Fiction
 A treatment of select science fiction texts in terms of how they reflect shifting forms of work and social life in the 20th century. The course will focus on how these texts translate shifts in social patterns and popular entertainment. (3-0-3) (H)(C)

- **LIT 309**
 Short Fiction
 A formal and thematic analysis of a diverse selection of works of short fiction. The selection will be announced by the instructor when the course is scheduled. (3-0-3) (H)(C)

- **LIT 315**
 The Novel
 Analysis of the novel as a literary form with attention to its place in ongoing cultural and political discourse. (3-0-3) (H)(C)

- **LIT 317**
 The Novel Today
 An examination of major world fiction since World War II. Readings will be chosen from such writers as Graham Greene, Alexander Solzhenitsyn, Heinrich Boll, Saul Bellow, Robertson Davies, Gabriel Garcia Márquez, Nadine Gordimer, Toni Morrison and Salman Rushdie. (3-0-3) (H)(C)

- **LIT 326**
 World Literatures
 Contemporary networks of global capital and information technologies provide the motivation for the reading strategies of this course. The course will examine literary texts from a variety of global contexts from the perspectives of globalization and nationalism. (3-0-3) (H)(C)

- **LIT 328**
 Poetry
 Study of poetry and imaginative prose, including an analysis of the theoretical, literary, and sociocultural contexts of these works. The course may include creative writing by students. (3-0-3) (H)(C)
Course Descriptions

LIT 337
Shakespeare: Early Work
Study of Shakespeare’s work before 1600, focusing on the histories, early comedies, and tragedies. Close reading of the plays’ language and form, and emphasis on the place of drama in early modern culture. Syllabus varies but is likely to include Taming of the Shrew, Much Ado About Nothing, Parts 1 and 2 of Henry IV, Henry V, and Hamlet.
(3-0-3) (H)(C)

LIT 338
Shakespeare: Late Work
Study of Shakespeare’s work after 1600, focusing on the middle and late comedies and tragedies and the romances. Close reading of the plays’ language and form, and emphasis on the place of drama in early modern culture. Syllabus varies but is likely to include Twelfth Night, Macbeth, Coriolanus, Othello, King Lear, The Winter’s Tale, and The Tempest. May be taken independently of LIT 337.
(3-0-3) (H)(C)

LIT 341
Modern Drama
Study of major dramatists and movements in the theater since Ibsen and Strindberg, with special emphasis on such writers as Chekhov, Shaw, Brecht, O’Neill, Ionesco, and Pinter.
(3-0-3) (H)(C)

LIT 342
Theater in Chicago
Designed to introduce students to the variety of professional theater performances in and around Chicago. Main emphasis is on seeing plays, ancient to contemporary; essays and oral reports; study of dramatic genres and theater history.
(3-0-3) (H)(C)

LIT 343
Film Analysis
Examination of the style and language of film as shown in a number of feature films, with emphasis on the various ways individual directors use the cinema for personal and cultural ends.
(3-0-3) (H)(C)

LIT 353
Writing in Black
An examination of works by Toni Morrison, Paule Marshall, W.E.B. DuBois, Richard Wright, and other black writers. The course includes formal and ideological analysis, emphasizing both nationalism and transnationalism in black culture.
(3-0-3) (H)(C)

LIT 360
Chicago in Literature
A survey of great American novelists, poets, and dramatists who have lived and worked in Chicago from the time of the Great Fire to the present day, and who have made Chicago one of the great world literary centers. Writers discussed include such figures as Theodore Dreiser, Carl Sandburg, and Richard Wright.
(3-0-3) (H)(C)

LIT 366
Twentieth-Century American Literature
Study of such writers as Steinbeck, Frost, Eliot, Anderson, O’Neill, Hemingway, Cather, Wolfe, Faulkner and contemporary writers such as Updike and Toni Morrison.
(3-0-3) (H)(C)

LIT 380
Topics In Literature
An investigation into a topic of current or enduring interest in literature, which will be announced by the instructor when the course is scheduled.
(3-0-3) (H)(C)

LIT 411
Workshop in Creative Writing
A workshop demonstrating principles of composition in fiction, poetry, or drama, studied from a writer’s vantage point. Works by modern authors are analyzed. Student manuscripts are discussed and evaluated.
(3-0-3) (H)(C)

LIT 491
Independent Reading and Research
For advanced students. Prerequisite: Consent of department.
(Credit: Variable) (H)(C)

LIT 497
Special Project
(Credit: Variable)

Mathematics

Note:
Courses indicated by an * do not count towards any computer science, engineering, mathematics, or natural science degree program.

MATH 100
Introduction to the Profession
Introduces the student to the scope of mathematics as a profession, develops a sense of mathematical curiosity and problem solving skills, identifies and reinforces the student’s career choices, and provides a mechanism for regular academic advising. Provides integration with other first-year courses. Introduces applications of mathematics to areas such as engineering, physics, computer science, and finance. Emphasis is placed on the development of teamwork skills.
(2-0-2) (C)

MATH 119*
Geometry for Architects
Basic analytic geometry in two and three dimensions; trigonometry. Equations of lines, circles and conic sections; resolution of triangles; polar coordinates. Equations of planes, lines, and quadratic surfaces. Applications.
(3-0-3) (C)

MATH 120*, 121*
Business Mathematics I, II
An introduction to the mathematics used in the study of finance, financial markets, and economics.
(3-0-3); (3-0-3)

MATH 122*
Introduction to Calculus
Basic concepts of calculus of a single variable; limits, derivatives, and integrals. Applications.
(3-0-3)

MATH 148*
Calculus/Precalculus I
(4-0-4)
MATH 149
Calculus/Precalculus II
Applications of derivatives: related rates, maxima and minima, monotonicity, concavity, graphing, and optimization. Antiderivatives, first-order differential equations. Definite integral and applications. Implicit and inverse functions, and inverse trigonometric functions. Prerequisite: MATH 148. (3-0-3) (C)

MATH 151
Calculus I
Analytic geometry. Functions and their graphs. Limits and continuity. Derivatives of algebraic, trigonometric, and inverse trigonometric functions. Applications of the derivative. Introduction to integrals and their applications. Prerequisite: Placement. (4-1-5) (C)

MATH 152
Calculus II
Transcendental functions and their calculus. Integration techniques. Applications of the integral. Indeterminate forms and improper integrals. Polar coordinates. Numerical series and power series expansions. Prerequisite: Grade of “C” or better in MATH 151 or MATH 149; or Advanced Placement. (4-1-5) (C)

MATH 230
Introduction to Discrete Mathematics
Sets, statements, and elementary symbolic logic; relations and digraphs; functions and sequences; mathematical induction; basic counting techniques and recurrence. Credit will not be granted for both CS 330 and MATH 230. (3-0-3) (C)

MATH 251
Multivariate and Vector Calculus
Analytic geometry in three-dimensional space. Partial derivatives. Multiple integrals. Vector analysis. Applications. Prerequisite: MATH 152. (4-0-4)

MATH 252
Introduction to Differential Equations

MATH 300
Perspectives in Analysis
The course is focused on selected topics related to fundamental concepts and methods of classic analysis and their applications with emphasis on various problem-solving strategies, visualization, mathematical modeling, and interrelation of different areas of mathematics. Prerequisites: MATH 251 and MATH 252 or consent of the instructor. (3-0-3)

MATH 332
Matrices
Matrix algebra, rank, inverses; systems of linear equations, determinants; eigenvalues and eigenvectors. Corequisite: MATH 251. (3-0-3)

MATH 333
Matrix Algebra and Complex Variables
Vectors and matrices; matrix operations, transpose, rank, inverse; determinants; solution of linear systems; eigenvalues and eigenvectors. The complex plane; analytic functions; contour integrals; Laurent series expansions; singularities and residues. Prerequisite: MATH 251. (3-0-3)

MATH 350
Introduction to Computational Mathematics
Study and design of mathematical models for the numerical solution of scientific problems. This includes numerical methods for the solution of linear and nonlinear systems, basic data fitting problems, and ordinary differential equations. Robustness, accuracy, and speed of convergence of algorithms will be investigated including the basics of computer arithmetic and round-off errors. Prerequisite: MATH 251, MATH 252, and (CS 105 or CS 115). Same as MMAE 350. (3-0-3)

MATH 400
Real Analysis
Real numbers, continuous functions; differentiation and Riemann integration. Functions defined by series. Prerequisite: MATH 251 or consent of instructor. (3-0-3)

MATH 402
Complex Analysis
Analytic functions, conformal mapping, contour integration, series expansions, singularities and residues, and applications. Intended as a first course in the subject for students in the physical sciences and engineering. Prerequisite: MATH 251. (3-0-3)

MATH 405
Introduction to Iteration and Chaos
Functional iteration and orbits, periodic points and Sharkovskiy’s cycle theorem, chaos and dynamical systems of dimensions one and two. Julia sets and fractals, physical implications. Prerequisites: MATH 251; MATH 252; one of the following: MATH 332, or MATH 333, or consent of the instructor. (3-0-3) (C)

MATH 410
Number Theory
Divisibility, congruences, distribution of prime numbers, functions of number theory, diophantine equations, applications to encryption methods. Prerequisite: MATH 230 or consent of instructor. (3-0-3)

MATH 420
Geometry
The course is focused on selected topics related to fundamental concepts and methods of Euclidean geometry in two and three dimensions and their applications with emphasis on various problem-solving strategies, geometric proof, visualization, and interrelation of different areas of mathematics. Prerequisite: Consent of instructor. (3-0-3)
MATH 425
Statistical Methods
Concepts and methods of gathering, describing, and analyzing data including basic statistical reasoning, basic probability, sampling, hypothesis testing, confidence intervals, correlation, regression, forecasting, and nonparametric statistics. No knowledge of calculus is assumed. This course is useful for students in education or the social sciences. This course does not count for graduation in any mathematics programs. Credit not given for both MATH 425 and MATH 476.
(3-0-3)

MATH 426
Statistical Tools for Engineers
Descriptive statistics and graphs, probability distributions, random sampling, independence, significance tests, design of experiments, regression, time-series analysis, statistical process control, introduction to multivariate analysis. Prerequisite: Junior standing. Same as CHE 426. Credit not given for both MATH 426 and CHE 426.
(3-0-3)

MATH 430
Applied Algebra
Relations; modular arithmetic; group theory: symmetry, permutation, cyclic, and abelian groups; group structure: subgroups, cosets, homomorphisms, classification theorems; rings and fields. Applications to crystallography, cryptography, and check-digit schemes. Prerequisite: MATH 230 or MATH 332.
(3-0-3)

MATH 435
Linear Optimization
Introduction to both theoretical and algorithmic aspects of linear optimization: geometry of linear programs, simplex method, anticycling, duality theory and dual simplex method, sensitivity analysis, large scale optimization via Dantzig-Wolfe decomposition and Benders decomposition, interior point methods, network flow problems, integer programming. Credit may not be granted for both MATH 435 and MATH 535. Prerequisite: MATH 324 or consent of instructor.
(3-0-3)

MATH 453
Combinatorics
Permutations and combinations; pigeonhole principle; inclusion-exclusion principle; recurrence relations and generating functions; enumeration under group action. Prerequisite: MATH 230 or consent of instructor.
(3-0-3)

MATH 454
Graph Theory and Applications
Graph theory is the study of systems of points with some of the pairs of points joined by lines. Sample topics include: paths, cycles and trees; adjacency and connectivity; directed graphs; Hamiltonian and Eulerian graphs and digraphs; intersection graphs. Applications to the sciences (computer, life, physical, social) and engineering will be introduced throughout the course. Credit will not be granted for both MATH 454 and MATH 553. Prerequisite: MATH 230, MATH 251, or MATH 252.
(3-0-3)

MATH 461
Fourier Series and Boundary-Value Problems
(3-0-3)

MATH 474
Probability and Statistics
Elementary probability theory including discrete and continuous distributions, sampling, estimation, confidence intervals, hypothesis testing, and linear regression. Prerequisite: MATH 251. Credit not granted for both MATH 474 and MATH 475.
(3-0-3)

MATH 475
Probability
Elementary probability theory; combinatorics; random variables; discrete and continuous distributions; joint distributions and moments; transformations and convolution; basic theorems; simulation. Prerequisite: MATH 251. Credit not granted for both MATH 474 and MATH 475.
(3-0-3)

MATH 476
Statistics
Estimation theory; hypothesis tests; confidence intervals; goodness-of-fit tests; correlation and linear regression; analysis of variance; nonparametric methods. Prerequisite: MATH 475.
(3-0-3)

MATH 477
Numerical Linear Algebra
Fundamentals of matrix theory: least squares problems; computer arithmetic; conditioning and stability; direct and iterative methods for linear systems; eigenvalue problems. Prerequisite: MATH 350 or consent of instructor.
(3-0-3)

MATH 478
Numerical Methods for Differential Equations
Polynomial interpolation; numerical integration; numerical solution of initial value problems for ordinary differential equations by single and multi-step methods, Runge-Kutta, Predictor-Corrector; numerical solution of boundary value problems for ordinary differential equations by shooting method, finite differences, and spectral methods. Prerequisite: MATH 350 or consent of instructor.
(3-0-3)

MATH 481
Introduction to Stochastic Processes
This is an introductory course in stochastic processes. Its purpose is to introduce students to a range of stochastic processes which are used as modeling tools in diverse fields of applications, especially in the business applications. The course introduces the most fundamental ideas in the area of modeling and analysis of real world phenomena in terms of stochastic processes. The course covers different classes of Markov processes: discrete and continuous-time Markov chains, Brownian motion and diffusion processes. It also presents some aspects of stochastic calculus with emphasis on the application to financial modeling and financial engineering. Credit will not be granted for MATH 481 and 542. Prerequisites: MATH 332 or MATH 333 and MATH 475.
(3-0-3)

MATH 483
Design and Analysis of Experiments
Principles of estimation; hypothesis tests, confidence intervals. Contingency tables; goodness-of-fit. Analysis of variance; linear regression. Hierarchical and split-plot designs; analysis of covariance. Multiple regression. Prerequisite: MATH 476.
(3-0-3)
Course Descriptions

MATH 485
Introduction to Mathematical Finance
This is an introductory course in mathematical finance. Technical difficulty of the subject is kept at a minimum by considering a discrete time framework. Nevertheless, the major ideas and concepts underlying modern mathematical finance and financial engineering will be explained and illustrated. Credit may not be granted for MATH 485 and MATH 548. Prerequisite: MATH 475 or equivalent.
(3-0-3)

MATH 486
Mathematical Modeling I
A general introduction to optimization problems. Linear programming: the simplex method. Elements of graphs and networks: Introduction to game theory. Applications. Prerequisite: MATH 475 or consent of instructor.
(3-0-3) (C)

MATH 487
Mathematical Modeling II
The formulation of mathematical models, solution of mathematical equations, and interpretation of results. Selected topics from queueing theory and financial derivatives. Prerequisite: MATH 252.
(3-0-3) (C)

MATH 488
Ordinary Differential Equations and Dynamical Systems
Boundary-value problems and Sturm-Liouville theory; linear system theory via eigenvalues and eigenvectors; Floquet theory; nonlinear systems: critical points, linearization, stability concepts, index theory, phase portrait analysis, limit cycles, and stable and unstable manifolds; bifurcation; and chaotic dynamics. Prerequisites: MATH 251, MATH 252.
(3-0-3)

MATH 489
Partial Differential Equations
First-order equations, characteristics. Classification of second-order equations. Laplace’s equation: potential theory, Green’s function, maximum principles. The wave equation: characteristics, general solution. The heat equation: use of integral transforms. Prerequisite: MATH 461.
(3-0-3)

MATH 491
Reading and Research
Independent reading and research. (Credit: Variable) (C)

Military Science

MILS 101
Foundations of Officering
Issues and competencies that are central to a commissioned officer’s responsibilities. Establish framework for understanding officering, leadership, and Army values followed and “life skills” such as physical fitness and time management.
(1-2-1) (C)

MILS 102
Basic Leadership
Establishes foundation of basic leadership fundamentals such as problem solving, communications, briefings and effective writing, goal setting techniques for improving listening and speaking skills, and an introduction to counseling.
(1-2-1) (C)

MILS 107
American Military History
Study of American military history through examination of evolution of the Army and warfare.
(3-2-3)

MILS 147, 148, 247, 248, 347, 348, 447, 448
Aerobic Conditioning
Participation in aerobic exercise program; evaluation of the level of cardiovascular fitness.
(0-3-2)

MILS 201
Individual Leadership Studies
Students identify successful leadership characteristics through observation of others and self and through experiential learning exercises. Students record observed traits (good and bad) in a small group setting.
(2-2-2)

MILS 202
Leadership and Teamwork
Study examines how to build successful teams, various methods for influencing action, effective communication in setting and achieving goals, the importance of timing the decision, creativity in the problem solving process, and obtaining team buy-in through immediate feedback.
(2-2-2)

MILS 301
Leadership and Problem Solving
Students conduct self-assessment of leadership style, develop personal fitness regimen, and learn to plan and conduct individual/small unit tactical training while testing reason and problem-solving techniques. Students receive direct feedback on leadership abilities. Prerequisites: Basic course or equivalent and consent of the department.
(3-2-3) (C)

MILS 302
Leadership and Ethics
Examines the role communications, values, and ethics play in effective leadership. Topics include ethical decision-making, consideration of others, spirituality in the military, and survey Army leadership doctrine. Emphasis on improving oral and written communication abilities. Prerequisites: MILS 301 and consent of the instructor.
(3-2-3) (C)

MILS 401
Leadership and Management
Develops student proficiency in planning and executing complex operations, functioning as a member of a staff, and mentoring subordinates. Students explore training management, methods of effective staff collaboration, and developmental counseling techniques. Prerequisites: MILS 301, 302 and consent of the instructor.
(3-2-3) (C)

MILS 402
Officering
Study includes case study analysis of military law and practical exercises on establishing an ethical command climate. Students must complete a semester long Senior Leadership Project that requires them to plan, organize, collaborate, analyze, and demonstrate their leadership skills. Prerequisites: MILS 301, 302, 401 and consent of the department.
(3-2-3) (C)
Course Descriptions

MILS 499
Advanced Independent Research
Intensive research and study of selected topics. May be repeated for a maximum of six credit hours. A practical laboratory is required for Army ROTC cadets. Prerequisite: Department approval. (Credit: 1-4 hours)

MMAE 100
Introduction to the Profession
Introduces the student to the scope of the engineering profession and its role in society, develops a sense of professionalism in the student, confirms and reinforces the student's career choices, and provides a mechanism for regular academic advising. Provides integration with other first-year courses. Applications of mathematics to engineering. Emphasis is placed on the development of professional communications and teamwork skills. (1-4-3) (C)

MMAE 200
Introduction to Mechanics
Equilibrium concepts. Statics of a particle. Statics of a system of particles and rigid bodies. Distributed forces, centroids and center of gravity. Friction. Kinetics of particles: Newton’s Laws of motion, energy and momentum. Kinematics and of particles. Dynamics of rotating bodies. Credit for this course is not applicable to BSME or BSMSE programs. Prerequisites: PHYS 123, MATH 152, CS 105. (3-0-3)

MMAE 201
Mechanics of Solids I

MMAE 202
Mechanics of Solids II
Stress and strain relations, mechanical properties. Axially loaded members. Torsion of circular shafts. Plane stress and strain, Mohr’s circle, stress transformation. Elementary bending theory, normal and shear stresses in beams, beam deflection. Combined loading. Prerequisite: MMAE 200 or 201 (3-0-3)

MMAE 304
Mechanics of Aerostructures

MMAE 305
Dynamics

MMAE 306
Analysis and Design of Machine Elements

MMAE 310
Fluid Mechanics with Laboratory
Basic properties of fluids in motion. Lagrangian and Eulerian viewpoints, material derivative, streamlines, etc. Continuity, energy and linear and angular momentum equations in integral and differential forms. Integration of equations for one-dimensional flows and application to problems. Incompressible viscous flow; Navier-Stokes equations, parallel flow, pipe flow, and the Moody diagram. Introduction to laminar and turbulent boundary layers and free surface flows. Lab Component: Introduction to measurements of fluid properties and basic features of fluid flows; flow through pipes and channels, flow-induced forces on bodies; Conservation of energy; six laboratory experiments in small groups supplemented by demonstrations and films. Prerequisites: MMAE 201, MATH 251, MATH 252. Corequisite: MMAE 320. (3-3-4) (C)

MMAE 311
Compressible Flow

MMAE 312
Aerodynamics of Aerospace Vehicles
Analysis of aerodynamic lift and drag forces on bodies. Potential flow calculation of lift on two-dimensional bodies; numerical solutions; source and vortex panels. Boundary layers and drag calculations. Aerodynamic characteristics of airfoils; the finite wing. Prerequisites: MMAE 310 or MMAE 313, MMAE 320. Corequisite: MMAE 311. (3-0-3)

MMAE 313
Fluid Mechanics without Laboratory
Same as MMAE 310 without the laboratory component. Prerequisites: MMAE 200 or MMAE 201, MATH 251. Corequisite: MMAE 320. (3-0-3)
MMAE 316
Aero Lab I
Basic skills for engineering research are taught, which include: analog electronic circuit analysis, fundamentals of digital data acquisition, measurements of pressure, temperature, flow rate, heat transfer, and static forces and moments; statistical data analysis. Prerequisites: MMAE 310 or MMAE 313, PHYS 221.
(2-6-4)

MMAE 320
Thermodynamics
Introduction to thermodynamics including properties of matter; First Law of Thermodynamics and its use in analyzing open and closed systems; limitations of the Second Law of Thermodynamics; entropy. Prerequisites: CHEM 124, MATH 251. Corequisite: PHYS 224.
(3-0-3)

MMAE 321
Applied Thermodynamics
Analysis of thermodynamic systems, including energy analysis; analysis and design of power and refrigeration cycles; gas mixtures and chemically reacting systems; chemical equilibrium; combustion and fuel cells. Prerequisites: MMAE 320, MATH 251. Corequisite: MMAE 310.
(3-0-3)

MMAE 322
Heat and Mass Transfer
Basic laws of transport phenomena, including: steady-state heat conduction; multi-dimensional and transient conduction; forced internal and external convection; natural convection; heat exchanger design and analysis; fundamental concepts of radiation; shape factors and network analysis; diffusive and convective mass transfer; phase change, condensation and boiling. Lab component: one-dimensional steady-state conduction; multi-dimensional steady-state conduction; convection; heat exchanger analysis; radiation; phase change. Six laboratory experiments in small groups. Prerequisites: MMAE 320, MMAE 310.
(3-3-4) (C)

MMAE 350
Computational Mechanics
Explores the use of numerical methods to solve engineering problems in solid mechanics, fluid mechanics and heat transfer. Topics include matrix algebra, nonlinear equations of one variable, systems of linear algebraic equations, nonlinear equations of several variables, classification of partial differential equations in engineering, the finite difference method, and the finite element method. Prerequisites: CS 105, MATH 251. Corequisites: MATH 252, MMAE 202. Same as MATH 350.
(3-0-3)

MMAE 362
Physics of Solids
(3-0-3) (C)

MMAE 365
Structure and Properties of Materials I
Crystal structures and structure determination. Crystal defects, intrinsic and extrinsic properties, diffusion, kinetics of transformations, evolution and classification of microstructures. Prerequisite: MS 201. Corequisites: MMAE 363 or MMAE 320 and consent of instructor.
(3-0-3)

MMAE 370
Materials Laboratory I
Introduction to materials characterization techniques including specimen preparation, metallography, optical and scanning electron microscopy, temperature measurement, data acquisition analysis and presentation. Corequisite: MMAE 371.
(1-6-3) (C)

MMAE 371
Engineering Materials and Design
Mechanical behavior of metals, polymers, ceramics and composites, laboratory testing methods including tension, torsion, hardness, impact, toughness, fatigue, and creep. Evaluation of structural performance in terms of material processing, service conditions, and design. Prerequisites: MS 201, MMAE 201, MMAE 202. Formerly MMAE 271.
(2-3-3) (C)

MMAE 372
Aerospace Materials Lab
Mechanical behavior and microstructural characterization of aerospace materials including: advanced metal alloys, polymers, ceramics, and composites. Introduction to mechanical testing techniques for assessing the properties and performance of aerospace materials. Evaluation of structural performance in terms of materials selection, processing, service conditions, and design. Prerequisites: MS 201, MMAE 202.
(2-3-3)

MMAE 406
Mechanical Vibrations
Study of free, forced and damped vibrations of single degree of freedom mechanical systems: resonance, critical damping, and vibration isolation. Two degree of freedom systems: natural frequencies, normal modes, resonances, and vibration absorbers. Introduction to vibrations of multiple degree of freedom. Prerequisites: MMAE 305, MMAE 350.
(3-0-3) (C)

MMAE 407
Biomechanics: Solids
(3-0-3) (C)
MMAE 410
Aircraft Flight Mechanics

MMAE 411
Spacecraft Dynamics
Orbital mechanics: two-body problem, Kepler’s equation, classical orbital elements, and introduction to orbit perturbations. Spacecraft mission analysis: orbital maneuvers and stationkeeping, earth orbital, lunar, and interplanetary missions, introduction to orbit determination. Spacecraft attitude dynamics: three-dimensional kinematics and dynamics of spacecraft, rotating reference frames and orientation angles, and spacecraft equations of motion. Spacecraft attitude stability and control: dual-spin platforms, momentum wheels, control-moment gyros, gravity gradient stabilization, introduction to spacecraft attitude determination and control. Prerequisites: MMAE 200 or (MMAE 201 and MMAE 305), MATH 252. (3-0-3)

MMAE 412
Spacecraft Design I
Launch vehicle design including system engineering, payload mission definition, propulsion and staging, structural design, trajectory analysis and guidance, launch window considerations, navigation and attitude determination, booster re-entry, range safety, and reliability. Semester-long project is focused on the integration of multiple systems into a coherent launch vehicle design to achieve specific mission requirements. Prerequisites: MMAE 304, MMAE 452. Corequisite: MMAE 411. (2-3-3)

MMAE 413/IPRO
Spacecraft Design II
Spacecraft systems design including real world mission analysis and orbit design, launch vehicle requirements, attitude determination and control, propulsion, structural design, power systems thermal management, and telecommunications. Semester-long project is focused on the integration of multiple systems into a coherent spacecraft design to achieve specific mission requirements. Non-Aerospace engineering majors may enroll in this course with the permission of the course instructor and the IRPO office. Prerequisites for Aerospace Engineering students: MMAE 410 and MMAE 414. (1-6-3)

MMAE 415/IPRO
Aircraft Design II
Team project that includes conceptual design, detail design, prototyping, and testing (or simulation) of an aircraft model or aircraft subsystem to meet performance specifications. Non-Aerospace engineering majors may enroll in this course with the permission of the course instructor and the IRPO office. Prerequisites for Aerospace Engineering students: MMAE 410 and MMAE 414. (1-6-3)

MMAE 416
Aero Lab II
Advanced skills for engineering research are taught, which include experiments with digital electronic circuit analysis, dynamic data acquisition techniques, fundamentals of fluid power system design, GPS and inertial guidance systems, air-breathing propulsion, and fly-by-wire control. (2-6-4)

MMAE 417
Advanced Aerodynamics
Unsteady aerodynamics, nonlinear flight regimes at high angle of attack, missile aerodynamics, hypersonic flight, and other topics relevant to the aerospace industry. Corequisite: MMAE 410. (3-0-3)

MMAE 418
Fluid Power for Aerospace Applications
Basic principles and concepts needed for the design of fluid power systems. Emphasis is placed on flight control hardware for aircraft and launch vehicle applications. Corequisites: MMAE 443, MMAE 416. (3-0-3)

MMAE 423
Air Conditioning and Refrigeration
Environmental control for winter and summer; elements of psychrometrics, load calculations. Space heating and cooling methods; extended surface coils; absorption refrigeration; system analysis and planning. Prerequisites: MMAE 321, MMAE 322. (3-0-3)

MMAE 424
Internal Combustion Engines
Fundamentals of spark ignition and diesel engines. Combustion knock and engine variables; exhaust gas analysis and air pollution; carburetion; fuel injection; lubrication; engine performance; vehicle performance. Engine balance and vibrations. Electronic control. Prerequisites: MMAE 321, MMAE 322. (3-0-3)

MMAE 425
Direct Energy Conversion
A study of various methods available for direct conversion of thermal energy into electrical energy. Introduction to the principles of operation of magnetohydrodynamic generators, thermoelectric devices, thermionic converters, fuel cells, and solar cells. Prerequisites: MMAE 321, PHYS 224. (3-0-3)
MMAE 430
Engineering Measurements
Introduction to applications of measurement instrumentation and design of engineering experiments. Generalized characteristics of sensors and measurements systems. Signal conditioning and computer-based data acquisition and analysis. Measurement of motion, force, strain, torque, shaft power, pressure, sound, flow, temperature, and heat flux. Design of experiments proposals. Team-based projects addressing application of engineering measurements to a variety engineering problems. Effective communication of experimental results. Prerequisite: PHYS 300.
(2-6-4) (C)

MMAE 431
Design of Machine Elements
Design factors and fatigue. Application of principles of mechanics to the design of various machine elements such as gears, bearings, clutches, brakes, and springs.
(2-3-3)

MMAE 432
Design of Mechanical Systems
Small-group design projects drawn from industry. Prerequisite: MMAE 306 or consent of instructor.
(1-6-3)

MMAE 433
Design of Thermal System
Application of principles of fluid mechanics, heat transfer, and thermodynamics to design of components of engineering systems. Examples are drawn from power generation, environmental control, air and ground transportation, and industrial processes, as well as other industries. Groups of students work on projects for integration of these components and design of thermal systems. Prerequisites: MMAE 321, MMAE 322.
(2-3-3) (C)

MMAE 434
Design for Mechanical Reliability
Reliability and hazard functions; statics and dynamic reliability models for series, parallel and complex systems; reliability allocation. Probabilistic design; stress and strength distribution; safety factors; loading, random variables; geometric tolerances, linear and nonlinear dimensional combinations; stress as random variable; material properties as random variables; failure theories; significant stress-strength models; reliability confidence intervals. Prerequisite: MMAE 431.
(3-0-3)

MMAE 435
Design for Safety in Machines
A critical study of the interface between law and safety engineering, which embraces not only statutory law, such as OSHA and the Consumer Products Safety Act, but also case law arising from product liability suits. Detailed analysis of actual industrial and consumer accidents from the investigative stages through their litigation. Formulation of general safety design techniques for mechanical engineering systems and the development of courtroom communication skills for expert witnesses. Prerequisite: Senior standing.
(3-0-3)

MMAE 436
Design of Aerospace Vehicles
Aircraft design including aerodynamic, structural, and propulsion characteristics to achieve performance goals. Focus on applications ranging from commercial to military and from manned powered to high-speed to long-duration aircraft. Semester project is a collaborative effort in which small design groups complete the preliminary design cycle of an aircraft to achieve specific design requirements. Prerequisites: MMAE 304, MMAE 311, MMAE 312.
(2-3-3) (C)

MMAE 437
Design of Aerospace Vehicles II
Spacecraft systems design including mission analysis and astrodynamics, launch vehicle requirements, attitude determination and control, propulsion, structural design, power systems, thermal management, and telecommunications. Semester-long project is focused on the integration of multiple systems into a coherent spacecraft design to achieve specific mission requirements. Prerequisites: MMAE 441, MMAE 452.
(2-3-3)

MMAE 440
Introduction to Robotics
Classification of robots; kinematics and inverse kinematics of manipulators; trajectory planning; robot dynamics and equations of motion; position control. Prerequisites: MMAE 305, PHYS 300.
(3-0-3)

MMAE 441
Spacecraft and Aircraft Dynamics
Kinematics and dynamics of particles, systems of particles, and rigid bodies; translating and rotating reference frames; Euler angles. Aircraft longitudinal and lateral static stability; aircraft equations of motion. Space craft orbital dynamics; two-body problem classic orbital elements; orbital maneuvers. Prerequisite: MMAE 305, MMAE 312.
(3-0-3)

MMAE 442
Aircraft and Spacecraft Response and Control
Aircraft lateral modes of motion and approximations; the yaw damper. Aircraft response to control and external inputs; introduction to automatic control. Spacecraft attitude control devices, gyroscopic instruments, momentum exchange and mass movement techniques, gravity gradient stabilization. Introduction to spacecraft automatic attitude control systems. Prerequisite: MMAE 441.
(3-0-3)

MMAE 443
Systems Analysis and Control
(3-0-3)
MMAE 444
Design for Manufacture
The materials/design/manufacturing interface in the production of industrial and consumer goods. Material and process selection; process capabilities; modern trends in manufacturing. Life cycle engineering; competitive aspects of manufacturing; quality, cost, and environmental considerations. Prerequisite: MMAE 485 or equivalent.
(3-0-3)

MMAE 445
CAD/CAM with Numerical Control
Computer graphics in engineering design and CAD software and hardware. Numerical control of machine tools by various methods. Prerequisites: CS 105, MATH 252.
(3-0-3)

MMAE 450
Computational Mechanics II
Explores the use of numerical methods to solve engineering problems in continuum mechanics, fluid mechanics, and heat transfer. Topics include partial differential equations and differential and integral eigenvalue problems. As tools for the solution of such equations we discuss methods of linear algebra, finite difference and finite volume methods, spectral methods, and finite element methods. The course contains an introduction to the use of a commercial finite element package for the solution of complex partial differential equations. Prerequisites: MMAE 350 or MATH 350.
(3-0-3)

MMAE 451
Finite Element Methods in Engineering
(3-0-3)

MMAE 452
Aerospace Propulsion
Analysis and performance of various jet and rocket propulsive devices. Foundations of propulsion theory. Design and analysis of inlets, compressors, combustion chambers, and other elements of propulsive devices. Emphasis is placed on mobile power plants for aerospace applications. Prerequisite: MMAE 311
(3-0-3)

MMAE 463
Structure and Properties of Materials II
(3-0-3)

MMAE 465
Electrical, Magnetic and Optical Properties of Materials
Electronic structure of solids, semiconductor devices and their fabrication. Ferroelectric and piezoelectric materials. Magnetic properties, magnetocrystalline anisotropy, magnetic materials and devices. Optical properties and their applications, generation and use of polarized light. Prerequisite: MMAE 365 or consent of instructor.
(3-0-3)

MMAE 466
Microstructural Characterization of Materials
(2-3-3) (C)

MMAE 468
Introduction to Ceramic Materials
The structure and structure/properties relationships of ceramic materials. Topics include: crystal structure types; crystal defects; structure of glass; phase equilibria and how these affect applications for mechanical properties; electrical properties; and magnetic properties. Sintering and ceramic reactions are related to microstructure and resultant properties. Prerequisite: MS 201.
(3-0-3)

MMAE 470
Introduction to Polymer Science
An introduction to the basic principles that govern the synthesis, processing, and properties of polymeric materials. Topics include classifications, synthesis methods, physical and chemical behavior, characterization methods, processing technologies, and applications. Prerequisites: CHEM 124, MATH 251, PHYS 221. Same as CHE 470 and CHEM 470.
(3-0-3)

MMAE 472
Advanced Aerospace Materials
Principles of materials and process selection for minimum weight design in aerospace applications. Advanced structural materials for aircraft fuselage and propulsion applications. Materials for space vehicles and satellites. Environmental degradation in aerospace materials. Prerequisite: MMAE 371 or MMAE 372.
(3-0-3)

MMAE 473
Corrosion
Theory and prevention of corrosion of metals, including oxidation, sulphidation, other atmospheric attacks, aqueous corrosion, and other topics. Prerequisites: MMAE 361, MMAE 365.
(3-0-3)

MMAE 475
Powder Metallurgy
Production, pressing, and sintering of metal powders. Effects of particle size, friction, and die design on pressed densities. Theories of sintering, Relation of sintering practice to physical properties. Homogenization of alloys. Industrial equipment. Applications. Laboratory simulation of a series of P/M manufacturing cycles from powder to finished product are used to reinforce the classwork. Prerequisite: MMAE 365.
(2-3-3) (C)

MMAE 476
Materials Laboratory II
Advanced synthesis, processing, and characterization of metallic, nonmetallic, and composite materials. Experimental investigation of relationships between materials structures, processing routes, and properties. Design of experiments/statistical data. Prerequisite: MMAE 370 or instructor’s consent.
(1-6-3)
MMAE 477
Commercial Alloys
Classification of the commercially significant groups of ferrous and non-ferrous alloys. Mechanical, chemical, and physical behavior; the relationship to basic structure-property principles. The significance of the various alloy groups in engineering practice. Prerequisite: MMAE 463. Corequisite: MMAE 474. (3-0-3)

MMAE 478
Service Failure Analysis
Theory and analyses of materials failures. Prerequisite: Consent of instructor. (2-3-3)

MMAE 481
Introduction to Joining Processes
An introduction to principles and processes for joining similar and dissimilar materials. Emphasis is given to fusion processes. Prerequisite: Consent of instructor. (3-0-3)

MMAE 482
Composites
This course focuses on metal, ceramic and carbon matrix composites. Types of composite. Synthesis of precursors. Fabrication of composites. Design of composites. Mechanical properties and environmental effects. Applications. Prerequisite: MS 201. (3-0-3)

MMAE 483
Structure/Property Relationship in Polymers
Detailed study of the relationship between polymer structure, morphology, and properties. Topics include theories of rubber elasticity, the glassy state, semi-crystalline structure, and polymer melts. Effects of molecular weight and different types of intermolecular interactions are presented. Prerequisite: MMAE 470 or Consent of instructor. (3-0-3)

MMAE 484
Materials and Process Selection

MMAE 485
Manufacturing Processes
Principles of material forming and removal processes and equipment. Force and power requirements, surface integrity, final properties, and dimensional accuracy as influenced by material properties and process variables. Design for manufacturing. Factors influencing choice of manufacturing process. Prerequisite: MMAE 371. (3-0-3)

MMAE 486
Properties of Ceramics
Thermal, optical, mechanical, electrical, and magnetic properties of ceramics and their applications. Includes a review of defect equilibria and ceramic microstructures. Prerequisites: MS 201, MMAE 365. (3-0-3)

MMAE 487
Fiber Reinforced Polymeric Composite Materials
The materials, structure, and fabrication methods for fiber reinforced polymeric composites will be discussed. Prediction of mechanical properties such as stiffness and strength. Prediction methods for laminates. Thermal and diffusion properties. Prerequisite: MMAE 202. (3-0-3)

MMAE 489
Ferrous Products: Metallurgy & Manufacture
Relationships between the engineering aspects of steels are developed by considering the behavior of high purity iron; effects of interstitial and substitutional alloying element additions, metallurgical principles of engineering properties. Plain-carbon steels, low-alloy steels, quenched and tempered steels, stainless steels, and electrical steels. Impact of production developments on microstructure and properties. Prerequisite: Consent of instructor. (3-0-3)

MMAE 491
Undergraduate Research
Student undertakes an independent research project under the guidance of an MMAE faculty member. Requires approval of the MMAE Department Undergraduate Studies Committee. (Credit: Variable; three hours maximum.)

MMAE 494
Undergraduate Design Project
Student undertakes an independent design project under the guidance of an MMAE faculty member. Requires the approval of the MMAE Department Undergraduate Studies Committee. (Credit: Variable; three hours maximum.)

MMAE 497
Undergraduate Special Topics
(Credit: Variable)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

Materials Science

MS 201
Materials Science
The scientific principles determining the structure of metallic, polymeric, ceramic, semiconductor, and composite materials; electronic structure, atomic bonding, atomic structure, microstructure, and macrostructure. The basic principles of structure-property relationships in the context of chemical, mechanical, and physical properties of materials. Prerequisite: CHEM 122 or CHEM 124 or consent of instructor. (3-0-3)
Course Descriptions

Mathematics and Science Education

MSED 200 Analysis of Classrooms (Practicum and Seminar)
This course includes a two-hour seminar on campus each week along with approximately five hours per week in an area school. This is an introductory course that provides students background in learning theory, motivation theory, classroom management, aspects of effective teaching, critical classroom variables, and the school as a system.
(2-5-3) (C)

MSED 250 Middle and Secondary School Curriculum/Foundations
This lecture/discussion course focuses on history/sociology of education, rationales and goals of current reform efforts, curriculum design, development, and curriculum analysis.
(3-0-3) (C)

MSED 300 Instructional Methods/Strategies I
Discussion/laboratory oriented course that focuses on instructional planning, implementation considerations of various teaching methods, and development of instructional activities. Students are also provided with opportunities to practice instructional skills in peer teaching lessons. Prerequisites: MSED 200, MSED 250.
(3-0-3) (C)

MSED 320 Inquiry and Problem Solving in Mathematics and Science
Provides students with opportunities for reflection on aspects of inquiry/problem-solving and nature of science/mathematics. Provides background for student development of instructional materials focusing on inquiry/problem solving and nature of science/mathematics. Prerequisites: MSED 200, MSED 250.
(3-0-3) (C)

MSED 350 Informal Education Practicum and Seminar
Students spend approximately five hours per week in an informal education venue (e.g., museum, aquarium, zoo) along with a two-hour on-campus course per week. This course will help students develop an understanding of the roles informal institutions can play in math/science achievement and the ability to create instructional materials that capitalize on these community resources. Prerequisites: MSED 200, MSED 250.
(2-5-3) (C)

MSED 400 Instructional Methods/Strategies II
Follow-up course to Instructional Methods/Strategies I with a strong focus in various advanced instructional models such as inductive, deductive, synectics, inquiry role development, and cooperative learning. Students will have several opportunities to practice instructional models in peer teaching lessons. Prerequisites: MSED 300. Corequisites: MSED 320, MSED 350.
(3-0-3) (C)

MSED 450 Professional Internship
Capstone experience in which students assume continuous teaching responsibilities in at least three classes in an area school. Students will spend a full semester in the area school under the supervision of a classroom teacher and university supervisor. Prerequisites: MSED 300, MSED 320, MSED 350.
(0-4-6) (C)

MSED 480 Adolescent Psychology
This course is designed to develop the participants’ understanding of adolescent psychology. The main foci throughout the course are the unique aspects of adolescents and how those aspects influence behavior, learning, and social interactions, especially with regard to middle schools. Studies will include educational psychology theories and models, motivation and learning, developmental changes during adolescence, cognitive abilities, human ecology, diversity, and cultures. Additionally, participants will examine historical and philosophical perspectives and adolescent psychology and synthesize how these perspectives have influenced teaching, learning, and cultures in middle schools. The course will involve weekly readings and reflections, classroom experiences, short assignments, tests/quizzes, research projects, and formal class presentations. Prerequisite: Admission into the secondary mathematics teacher certification program or consent of instructor.
(3-0-3)

Naval Science

Note:
Naval Science courses are open to non-NROTC students with department approval. Courses marked with an asterisk(*) are not required for Marine Corps options students.

NS 101 Introduction to the Organization and Culture of the Naval Services
Composition and organization of the Naval Services; diverse missions, makeup, and manning of naval sea services with emphasis on duties and responsibilities of officers, rank and enlisted rating structure, training of subordinates, promotion and advancement, and military courtesy. Students will gain a fundamental understanding of the formal and informal structures of the main warfare communities and how each contributes to attaining the U.S. Navy and Marine Corps mission.
(2-2-2)

NS 102* Naval Ships Systems
Provides an elementary overview of Naval engineering systems and a detailed knowledge of the principles behind ship construction. Taught from a systems engineering standpoint. Topics include ship design, stability, and structural engineering; hydrodynamic forces; air and water systems; electrical theory, generation, and distribution systems; thermodynamics; damage control; hydraulics and ship control; theory and design of steam, nuclear, gas turbine, and diesel propulsion.
(3-2-3)
NS 201*
Naval Weapons Systems
Theory and employment of the Navy’s weapons, navigation, and communications systems. Processes of detection, evaluation, threat analysis, weapon selection, delivery, guidance, and explosives. Topics include fire control systems and major weapons types, including capabilities and limitations; physical aspects of radar and underwater sound; tactical and strategic significance of command, control, communications, computers, and intelligence with respect to weapons system integration. Supplemental review/analysis of case studies involving the moral and ethical responsibilities of leaders in employing weapons.
(3-2-3)

NS 202
Sea Power and Maritime Affairs
A survey of U.S. naval and maritime history in the context of world maritime development, including the historical evolution of American sea power and the role of U.S. naval forces in an era of geopolitical change.
(3-2-3) (C)

NS 301, 302
Marine Navigation and Naval Operations
An in-depth study of marine navigation from the perspective of a deck officer aboard a naval warship. Focus on piloting, electronic navigation, and the rules governing the conduct of vessels on the high seas. Students become familiar with the proper use of navigational charts, publications, and various aids to navigation and gain understanding of the influence of environmental factors (e.g., weather, tides, and currents) on ship operations. Introduction to basic concepts and tools required for safe and proper operation of naval vessels. Students become proficient at maneuvering boards, concentrating on interception, pass-no-closer-than, and wind problems. Formation operations, external communications, replenishment at sea, and ship handling.
(3-2-3); (3-2-3)

NS 310
Evolution of Warfare (Marine Corps Option Only)
Evolution of warfare from 600 B.C. to present. Students develop understanding and knowledge of the classic principles of war, the changes in conduct of war throughout time, and the actions and decisions of battlefield commanders and their soldiers.
(3-2-3) (C)

NS 401*
Leadership and Management Seminar for Naval Officers
Addresses leadership, management, and organizational behavior issues facing naval officers in a stressful environment, including strategic planning, time management, communication, counseling, team building, and decision making.
(3-2-3) (C)

NS 402
Naval Leadership and Ethics
An academic, discussion-oriented course intended to provide future leaders with a broad understanding of the various moral, ethical, and leadership philosophies that help strengthen junior-officer character.
(3-2-3) (C)

NS 410
History of Amphibious Warfare (Marine Corps Option Only)
Evolution of amphibious warfare from the battle of Marathon to present. Students develop understanding and knowledge of the evolution of amphibious warfare doctrine, the impact of significant events in history relating to amphibious operations, and the problems and advantages relative to employing amphibious forces in the modern era.
(3-2-3) (C)

NS 497
Directed Study
Provides midshipmen with an opportunity to work under the supervision of officer-instructor on projects related to professional development. Prerequisite: permission of department. (Credit: Variable)

Philosophy
Note:
All Philosophy courses have as a prerequisite the completion of HUM 102, 104, or 106.

PHIL 301
Ancient Philosophy
A study of major works by Plato, Aristotle, and other important ancient philosophers.
(3-0-3) (H)(C)

PHIL 302
Origins of Modern Philosophy
A study of major 17th and 18th century philosophers, such as Descartes, Hobbes, Spinoza, Locke, Leibniz, Berkeley, Hume, and Kant.
(3-0-3) (H)(C)

PHIL 305
20th-Century Philosophy
A study of recent philosophical trends (or movements), including logical positivism, existentialism, ordinary language philosophy, etc.
(3-0-3) (H)(C)

PHIL 311
Great Philosophers
An in-depth study of a single outstanding philosopher, chosen by the instructor. The focus of the course will be announced when the course is scheduled.
(3-0-3) (H)(C)

PHIL 326
Philosophy of Language
An analysis of the concept of language in both the works of philosophers and the works of linguists. The course looks into theories of linguistic meaning, sentence structure, speech acts, and the assumptions underlying research in modern linguistics.
(3-0-3) (H)(C)

PHIL 332
Political Philosophy
Examination of different conceptions of legitimate political authority; includes discussion of ideas of social justice, natural rights, sovereignty.
(3-0-3) (H)(C)
PHIL 333
Social Philosophy
A systematic examination of contemporary social issues, such as abortion, euthanasia, war, environmental destruction, poverty, terrorism, and sexual morality.
(3-0-3) (H)(C)

PHIL 341
Philosophy of Science
Through an analysis of the concepts of explanation, theory, hypothesis, experiment, and observation, this course seeks an understanding of how the growth of scientific knowledge is possible.
(3-0-3) (H)(C)

PHIL 342
Philosophy of Mind
An examination of the conception of “mind” as opposed to body, and its implications for psychology, artificial intelligence, and neuroscience.
(3-0-3) (H)(C)

PHIL 343
Philosophy of Social Inquiry
An examination of the methods and theories of the social sciences, especially sociology, anthropology, and their relationships to the natural sciences.
(3-0-3) (H)(C)

PHIL 350
Science and Method
A history of the interaction between science and philosophy showing how changing conceptions of metaphysics and scientific method have influenced the development of Renaissance astronomy, nineteenth-century atomic theory, ether theories, theories of geological and biological change, etc.
(3-0-3) (H)(C)

PHIL 351
Science and Values
This course will consider questions such as: What role should values play in scientific inquiry? Should scientists consider only epistemic or cognitive values, or should they also take into account social and cultural values? Could science be objective and make progress if it is shaped by social and cultural values?
(3-0-3) (H)(C)

PHIL 360
Ethics
A study of the fundamental issues of moral philosophy.
(3-0-3) (H)(C)

PHIL 362
Philosophy of Law
An analysis of the concept of law and how it differs from custom, religion, and morality. The course looks into issues of judicial reasoning, the assumptions that underlie the criminal justice system and the imposition of liability, and legal ethics.
(3-0-3) (H)(C)

PHIL 363
Aesthetics
The philosophy of the fine arts, including an analysis of the concepts of beauty, representation, expression and the purpose of art.
(3-0-3) (H)(C)

PHIL 365
Philosophy of Free Speech
Analysis of the philosophical foundations of the right of free speech within the American Constitution’s framework. Topics include: the philosophical underpinnings of the right of free speech, judicial review under the Constitution, selected free speech issues such as libel, defamation, speech in the workplace, pornography, flag-burning, and others.
(3-0-3) (H)(C)

PHIL 370
Engineering Ethics
A study of the problems of moral and social responsibility for the engineering profession, including such topics as safety, confidentiality, and government regulation.
(3-0-3) (H)(C)

PHIL 371
Ethics in Architecture
A study of the moral problems architects must resolve in the practice of their profession, including problems of confidentiality, candor, esthetics, and economy arising from the special responsibilities of architects to and public, client, employer, and colleagues.
(3-0-3) (H)(C)

PHIL 373
Business Ethics
Ethical issues relating to individual and corporate responsibility, self and governmental regulation, investment, advertising, urban problems, the environment, and preferential hiring.
(3-0-3) (H)(C)

PHIL 374
Ethics in Computer Science
Moral problems that confront professionals in computer-related fields, including questions raised by the concept of intellectual property and its relationship to computer software, professional codes of ethics for computer use, responsibility for harm resulting from the misuse of computers.
(3-0-3) (H)(C)

PHIL 377
Communication Law and Ethics
This course explores ethical and legal issues concerning communication in diverse contexts, such as: the mass media e.g. print, broadcast, and electronic; government and politics; organizational hierarchies e.g. public and private sector workplaces; academic life e.g. the classroom, student, and faculty affairs; and interpersonal relations e.g. love, friendship, marriage.
(3-0-3) (H)(C)

PHIL 380
Topics in Philosophy
An investigation into a topic of current interest in philosophy, which will be announced by the instructor when the course is scheduled.
(3-0-3) (H)(C)

PHIL 490, 491
Independent Study
Supervised individual research for advanced students. Prerequisite: Consent of the department.
(Credit: Variable) (H)(C)
Physics

PHYS 100
Introduction to the Profession
Introduction to the physical sciences, scientific method, computing tools, and interrelations of physical sciences with chemistry, biology, and other professions. (2-0-2) (C)

PHYS 120
Astronomy
A descriptive survey of observational astronomy, the solar system, stellar evolution, pulsars, black holes, galaxies, quasars, and the origin and fate of the universe. (3-0-3)

PHYS 123
General Physics I: Mechanics
Vectors and motion in one, two, and three dimensions. Newton’s Laws. Particle dynamics, work, and energy. Conservation laws and collisions. Rotational kinematics and dynamics, angular momentum, and equilibrium of rigid bodies. Gravitation, oscillations, and waves. Corequisite: MATH 149 or MATH 151. (3-3-4) (C)

PHYS 200
Basic Physics for Architects
This class is a one-semester course primarily for students of architecture. The course will address the basic physical principles and concepts associated with structures and buildings. Although quantitative at times, the course will stress conceptual understanding and practical applications. Hands-on exercises will be conducted both in class, and out of class. Extensive web-based materials will be available in lieu of a textbook. (4-0-4)

PHYS 211, 212
Basic Physics I, II
Intended to give students in the liberal arts, business, and psychology an understanding of the basic principles of physics and an appreciation of how the results of physics influence contemporary society. Prerequisite: MATH 122. These courses do not satisfy graduation requirements in any engineering or physical science program. (3-0-3); (3-0-3)

PHYS 221
General Physics II: Electricity and Magnetism
Charge, electric field, Gauss’ Law, and potential. Capacitance, resistance, simple a/c and d/c circuits. Magnetic fields, Ampere’s Law, Faraday’s Law, induction, and Maxwell’s equations. Traveling waves, electromagnetic waves, and light. Prerequisite: PHYS 123 or permission of department. (3-3-4)

PHYS 223
General Physics III
Sound, Fluid mechanics, and elasticity. Temperature, first and second laws of thermodynamics, kinetic theory, and entropy. Reflection, refraction, interference, and diffraction. Special relativity. Quantization of light, charge, and energy. Prerequisite: PHYS 221 or permission of department. (3-3-4)

PHYS 224
General Physics III for Engineers
Sound and Fluid mechanics. Temperature, first and second laws of thermodynamics, kinetic theory, and entropy. Reflection, refraction, interference, and diffraction. Special relativity. Light and quantum physics, structure of the hydrogen atom, Atomic physics, electrical conduction in solids, nuclear physics, particle physics, and cosmology. Prerequisite: PHYS 221 or permission of department. (3-0-3)

PHYS 240
Computational Science
This course provides an overview of introductory general physics in a computer laboratory setting. Euler-Newton method for solving differential equations, the trapezoidal rule for numerical quadrature and simple applications of random number generators. Computational projects include the study of periodic and chaotic motion, the motion of falling bodies and projectiles with air resistance, conservation of energy in mechanical and electrical systems, satellite motion, using random numbers to simulate radioactivity, the Monte Carlo method, and classical physical models for the hydrogen molecule and the helium atom. Prerequisite: PHYS 223 or permission of the department. (2-3-3) (C)

PHYS 300
Instrumentation Laboratory
Basic electronic skills for scientific research. Electrical measurements, basic circuit analysis, diode and transistor circuits. Transistor and integrated amplifiers, filters, and power circuits. Basics of digital circuits, including Boolean algebra and design of logic circuits. Prerequisite: PHYS 221. (2-3-3) (C)

PHYS 304
Thermodynamics and Statistical Mechanics
Statistical basis of thermodynamics, including kinetic theory, fundamentals of statistical mechanics, fluctuations and noise, transport phenomena, and the Boltzmann equation. Thermodynamic functions and their applications, first and second laws of thermodynamics. Prerequisite: PHYS 223. (3-0-3)

PHYS 308, 309
Classical Mechanics I, II
Newton’s Laws, one-dimensional motion, vector methods, kinematics, dynamics, conservation laws, and the Kepler problem. Collisions, systems of particles, and rigid-body motion. Approximation techniques; Lagrangian and Hamiltonian formulations of classical mechanics; small oscillations. Prerequisites: PHYS 223, MATH 252. (3-0-3); (3-0-3)

PHYS 348
Modern Physics for Scientists and Engineers
An introduction to modern physics with emphasis on the basic concepts that can be treated with elementary mathematics. Subjects covered include elementary wave mechanics, and atomic and molecular spectra, nuclear and particle physics. Prerequisite: PHYS 223. (3-0-3)
PHYS 403
Relativity
Introduction to the special and general theories of relativity. Lorentz covariance. Minkowski space. Maxwell's equations. Relativistic mechanics. General coordinate covariance, differential geometry, Riemann tensor, the gravitational field equations. Schwarzschild solution, astronomical and experimental tests, relativistic cosmological models. Prerequisites: PHYS 309, MATH 251 or consent of instructor.
(3-0-3)

PHYS 404
Subatomic Physics
Historical introduction; general survey of nuclear and elementary particle physics; symmetries and conservation laws; leptons, quarks and vector bosons; unified electromagnetic and weak interactions; the parton model and quantum chromodynamics. Prerequisite: PHYS 348.
(3-0-3)

PHYS 405
Fundamentals of Quantum Theory I
A review of modern physics including topics such as blackbody radiation, the photoelectric effect, the Compton effect, the Bohr model of the hydrogen atom, the correspondence principle, and the DeBroglie hypothesis. Topics in one-dimensional quantum mechanics such as the particle in an infinite potential well, reflection and transmission from potential wells, barriers and steps, the finite potential well, and the quantum harmonic oscillator. General topics such as raising and lowering operators, Hermitian operators, commutator brackets and the Heisenberg Uncertainty Principle are also covered. Many particle systems and the Pauli Exclusion Principle are discussed. Three-dimensional quantum mechanical systems, orbital angular momentum, the hydrogen atom. Prerequisites: PHYS 308, PHYS 348, MATH 252 or permission of department.
(3-0-3)

PHYS 406
Fundamentals of Quantum Theory II
Zeeman and Stark Effects. Addition of spin and orbital angular momenta, the matrix representation of quantum mechanical operators, the physics of spin precession, and nuclear magnetic resonance. Time independent and time dependent perturbation theory, Fermi's Golden Rule, and the physics of radiation emitted in the course of atomic transitions. Indistinguishable particles in quantum mechanics, the helium atom. Scattering theory, using partial wave analysis and the Born approximation. Prerequisite: PHYS 405.
(3-0-3)

PHYS 410
Molecular Biophysics
(3-0-3)

PHYS 411
Astrophysics
Celestial mechanics and planetary motion; stellar structure and evolution; energy generation in stars; theory of white dwarfs, pulsars (neutron stars) and black holes; quasars; cosmology, background microwave radiation, and the big bang model. Prerequisite: PHYS 223 or consent of instructor.
(3-0-3)

PHYS 412
Modern Optics and Lasers
(3-0-3)

PHYS 413
Electromagnetism I
Differentiation and integration of vector fields; electrostatics and magnetostatics. Calculation of capacitance, resistance, and inductance in various geometries. Prerequisites: PHYS 308, MATH 252.
(3-0-3)

PHYS 414
Electromagnetism II
(3-0-3)

PHYS 415
Solid-State Electronics
Energy bands and carrier transport in semi-conductors and metals. Physical principles of p-n junction devices, bipolar junction transistors, FETS, Gunn diodes, IMPATT devices, light-emitting diodes, semiconductor lasers. Prerequisite: PHYS 348 or consent of instructor.
(3-0-3)

PHYS 418
Introduction to Lasers
(3-0-3)

PHYS 427, 428
Advanced Physics Laboratory I, II
Experiments related to our present understanding of the physical world. Emphasis is on quantum phenomena in atomic, molecular and condensed matter physics, along with the techniques of measurement and data analysis. The second semester stresses project-oriented experiments on modern topics including spectroscopy, condensed matter physics, and nuclear physics. Prerequisite: PHYS 348 or consent of instructor.
(2-3-3); (2-3-3) (C)

PHYS 437
Solid-State Physics
Crystal structure and binding; lattice vibrations; phonons; free electron model; band theory of electrons. Electrical, thermal, optical and magnetic properties of solids. Superconductivity. Prerequisite: PHYS 348 or consent of instructor.
(3-0-3)
PHYS 440
Computational Physics
Root finding using the Newton-Raphson method; interpolation using Cubic Splines and Least Square Fitting; solving ordinary differential equations using Runge-Kutta and partial differential equations using Finite Difference and Finite Element techniques; numerical quadrature using Simpson's Rule, Gaussian Quadrature and the Monte Carlo Method; and spectral analysis using Fast Fourier Transforms. These techniques are applied to a wide range of physics problems such as finding the energy levels of a finite quantum well using a root finding technique; solving the Schrodinger equation using the Runge-Kutta-Fehlberg method; using random numbers to simulate stochastic processes such as a random walk; using the Fast Fourier Transform method to perform a spectral analysis on non-linear; chaotic systems such as the Duffing oscillator; and using auto-correlation functions to simulate sonar or radar ranging problems. Prerequisites: PHYS 240, PHYS 308, PHYS 348, PHYS 405 or permission of department.
(2-3-3) (C)

PHYS 485
Physics Colloquium
Lectures by prominent scientists. This course exposes students to current and active research in physics both within and outside the IIT community. It helps prepare students for a career in research. It is complementary to the academic courses and provides examples of professional/scientific presentations. This course may not be used to satisfy the natural science general education requirement. Prerequisite: PHYS 223 or PHYS 224.
(1-0-1)

PHYS 491
Undergraduate Research
Student participation in undergraduate research, usually during the junior or senior year. Prerequisites: Recommendation of advisor and approval of the department chair.
(Credit: Variable) (C)

PHYS 497
Special Topics in Physics
(Credit: Variable) (C)

GRADUATE COURSES

Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current *IIT Bulletin: Graduate Programs* for full descriptions.

PHYS 501
Methods of Theoretical Physics I

PHYS 502
Methods of Theoretical Physics II

PHYS 505
Electromagnetic Theory

PHYS 507
Electrodynamics

PHYS 508
Analytical Dynamics

PHYS 509
Quantum Theory I

PHYS 510
Quantum Theory II

PHYS 515
Statistical Mechanics

PHYS 521
Quantum Electronics

PHYS 537
Physics of the Solid State I

PHYS 538
Physics of the Solid State II

PHYS 553
Quantum Field Theory

PHYS 561
Radiation Biophysics

PHYS 570
Introduction to Synchrotron Radiation Research

Political Science

Note:

All 400-level Anthropology courses/seminars require the completion of one 200-level course and one 300-level course in a relevant discipline as prerequisites.

PS 100
Introduction to the Profession Political Science
This course is for freshman political science majors. The course builds on the material in the first semester ITP course, exposing students to quasi-experimental methods, quantitative and qualitative approaches, and the history of the profession. Students will examine several fundamental works in the discipline.
(3-0-3) (C)

PS 200
American Government
Surveys American politics and government. Informal political institutions, such as parties and interest groups, are analysed and related to formal governmental institutions, such as the presidency and the Congress. Emphasis is placed on how the American political culture shapes these institutions and how public policies are produced.
(3-0-3) (S)(C)
Course Descriptions

PS 202 Introduction to Political Science
Introduces students to some of the classic literature in modern American political science, covering theory, the presidency, Congress, and federalism.
(3-0-3) (S)(C)

PS 209 Research Methods for Social and Political Science
Introduces students to explanation in the social sciences and both qualitative and quantitative research methods. Topics covered include the formulation of research questions, measurement, data collection, survey research, significance tests, experimental and quasi-experimental design, sampling, and various techniques of qualitative research. Same as SOC 209. This course does not fulfill the social science general education requirement, but it may be used as a free elective.
(3-0-3) (C)

PS 210 Social and Political Thought
Examines central social and political theories and their ideas concerning the relationship between individual and society, social harmony and conflict, social equality, and the role of the state. Same as SOC 210.
(3-0-3) (S)(C)

PS 230 International Relations
Examines relations among countries from the perspective of both the international system and the nation state. Emphasis is placed on the transformation in the international system caused by weapons, production, and communications technologies. Special attention is given to the international policies of the United States toward various regions and its role in international organizations.
(3-0-3) (S)(C)

PS 232 Introduction to Comparative Politics
Introduces students to the most common theories and approaches in contemporary comparative political analysis: political development and (post-)dependency theory, political culture, political regimes and the state, political elites, political participation. Students then employ the tools of comparison developed in an examination of the causes and consequences of political instability and conflict and transitions to stable democracy.
(3-0-3) (S)

PS 273 Great Political Thinkers
Introduces students to the ideas of the world’s great political philosophers. Plato, Aristotle, Hobbes, Locke, Rousseau, Marx, and others will be covered.
(3-0-3) (S)(C)

PS 300 Introduction to the Social Sciences
Introduces the foundations of the social science disciplines, notably economics, history, political science, psychology, and sociology. Primary emphasis will be placed on how the disciplines employ distinctive assumptions and perspectives, which are used to generate understanding, form explanations, and construct theories.
(3-0-3) (S)(C)

PS 303 Politics and the Media
Analyzes the media’s role in contemporary American politics and government. Emphasis is placed on how the media manufacture the news and how the news influences political and government agendas, decision making, and public policies.
(3-0-3) (S)(C)

PS 306 Politics and Public Policy
Analyzes how social problems become public problems and how the government develops public policies and with what effect. Emphasizes the characteristics of the American policy-making process. Case studies are used to clarify the process.
(3-0-3) (S)

PS 315 Urban Politics
Examines city and metropolitan politics and government. Emphasis is put on how economic and demographic changes influence local politics, how local politics work, and how state and national policies influence local politics.
(3-0-3) (S)(C)

PS 316 Political Parties Election Process
Examines election and campaigns from different perspectives, including the historical development of American elections, the rules by which campaigns are governed, the strategies that candidates follow in pursuit of office, and the role of political parties.
(3-0-3) (S)

PS 317 Chicago Politics
Studies Chicago’s politics and government from both historical and contemporary perspectives. Emphasis is placed on changes that have significantly shaped the direction of Chicago’s politics. Special attention is devoted to social class, ethnicity, race, and ideology as factors that have influenced the Democratic political machine and its opposition.
(3-0-3) (S)(C)

PS 318 Contemporary Constitutional Issues
Examines how decisions about some of our basic rights are made. Stress is laid on U.S. Supreme Court decisions in the areas of criminal law, desegregation, education, welfare, housing, and consumer law. Supreme Court decisions are read and supplemented by textual material.
(3-0-3) (S)(C)

PS 319 Comparative Health Systems
Surveys and compares health care systems in a range of developed and developing countries. The course examines why countries facing similar health problems have sometimes developed different policy responses, what has been the nature of those policies, and how (in)effective they have been. Health insurance, payment methods, the role of providers, the relationship between medicine and culture, and recent reforms and innovations in health care policy are among the issues to be discussed.
(3-0-3) (S)

PS 320 Urban Institutions
Examines the shift from social class and ethnic politics to racial politics in American cities. Racial politics is examined in the economic, political, and social sectors.
(3-0-3) (S)
PS 321 Social Inequality
Evaluates the patterns and dimensions of social, economic, and political inequality in American society and how these compare with other societies, who gets ahead and why, the relationship of social class to other features of society, some consequences of social stratification, and outlooks for the future of inequality in the United States. Same as SOC 321.
(3-0-3) (S)(C)

PS 323 Problems of Multi-Ethnic, Multi-Religious States
The course focuses on issues and problems arising in multi-ethnic, multi-language, or multi-religious states in which there has been substantial conflict or balkanization along religions or ethnic lines.
(3-0-3) (S)

PS 328 Vietnam War: Politics, Ideology, Societal Issues
This course examines the politics, rational, and societal issues relating to the Vietnam War and the impact of the war and related politics on current politics and current ideological disputes.
(3-0-3) (S)

PS 329 Politics of Global Warming
This course examines politics and policies relating to global warming using a multi-disciplinary approach. Students look at its anthropogenic causes, potential impacts on human society, potential mitigation strategies, and policy responses. Participants also examine the different issues relating to global warming including environmental, national security, economic, public safety issues, and national prestige.
(3-0-3) (S)

PS 331 World Politics
Explores the changes to the international system associated with the end of the Cold War, including the increase of violence and the rejection of existing definitions of the nation-state by many ethnic and sub-national groups. Students completing the course will acquire an understanding of the origin of numerous international problems and an awareness of the challenges such conflicts pose to the United States.
(3-0-3) (S)(C)

PS 332 Politics of Science and Technology
Explores the interrelationships among science, technology, and politics, with emphasis on the political issues created by contemporary scientific advances and molecular biology. We investigate the politics of scientific discovery, as well as procedures for scientific advice to government, the impact of industrial technology on the economy and society, and the social implications of science and technology and how they can be predicted, measured, and controlled.
(3-0-3) (S)(C)

PS 333 Politics of National Security
Examines the formulation and implementation of national security and military policy in the United States. We survey the emergence and growth of military strategy and the defense establishment, highlighting the impact of nuclear weapons on military strategy and security and the post-Cold War struggle over forces and missions.
(3-0-3) (S)(C)

PS 334 Post-Colonial Politics
Examines political developments in those parts of the world that had been under colonial domination during the period of European colonialism. Areas covered include movements of liberation and how they produced different forms of post-colonial states, as well as the role of ethnicity and religion in providing both unifying as well as divisive factors in the stability and instability of the post-colonial state.
(3-0-3) (S)(C)

PS 335 Issues in U.S. Space Policy
Examines the origins, evolution, current status, and future prospects of U.S. space policies and programs. The course provides students with an understanding of the governmental and non-governmental actors that make up the space policy community. Discussions are cast in the context of the space activities of other countries and of international competition and cooperation in space.
(3-0-3) (S)

PS 337 Social Scientific Imagination
Aims to provide a tool-kit for thinking about social life. This course is designed to complement existing methods courses and to give students a background in social-scientific thinking that may be used in a variety of other contexts.
(3-0-3) (S)

PS 338 Energy and Environmental Policy
Traces the economic and political implications of dependence on fossil fuels and the attempt to develop alternate energy sources and promote conservation. Assessed are the environmental effects of resource consumption and the effort to control these effects through increased efficiency and regulation of pollution. The class explores such problems as nuclear waste, acid rain, global warming, and deforestation, and examines national and international attempts at economic, political, and technological solutions.
(3-0-3) (S)(C)

PS 339 Nuclear Energy and Society
Explores the relationship between nuclear energy and society, giving detailed attention to the discovery of nuclear fission and its exploitation during World War II and after, which culminated in the global nuclear arms race. Examined are the emergence and growth of nuclear power and the controversy over its safety, security, and costs. The class considers the risks of continued proliferation and the prospects for arms control and the "peaceful atom". Same as SOC 339.
(3-0-3) (S)(C)

PS 340 Social Organization and Control
Surveys theories explaining the organization and structure of complex societies. The problem of social control, or the capacity of society to regulate itself formally or informally according to its desired principles, is considered as a central problem of social organization. Same as SOC 340.
(3-0-3) (S)(C)
Course Descriptions

PS 341
School Politics
This course examines how urban public schools have been governed over time, who have been the principal beneficiaries of these governance arrangements and how the governance arrangements have come into being. The course includes material on recent efforts as well as historical governance. (3-0-3) (S)

PS 344
Citizenship and State Since 1975
Considers the idea of citizenship and the role of the state in American politics during the period of 1975 to 2005. The course also examines the rise of feminism, affirmative action, the failure of the Vietnam strategy, the rise of religious fundamentalism, and the eventual challenges to American hegemony and the American response. (3-0-3) (S)

PS 345
The American Presidency
Surveys the evolution of the office and powers of the presidency as a result of historical forces, institutional factors, and the actions of those who have served as president. The course looks at the relationships of presidents with political parties, Congress, the bureaucracy, media, and the public, emphasizing both domestic and foreign policy. Major attention is given to changes in the presidential selection process and their implications for those who run for and win the office. (3-0-3) (S)(C)

PS 346
Citizenship and State: American Politics Since 1945
Investigates the unfolding of politics in the United States since the Second World War. The course focuses on political changes and ideas originating during the tumultuous 1960s, as well as reactions to them that remain with us to this day. The antecedents of the politics of the ’60s are explored in depth. The class thus explores the evolution of political participation, political processes, and the American state since 1945. (3-0-3) (S)(C)

PS 351
Public Administration
Examines the nature of administrative organization, decision making in organizations, and organizational structure and processes: division of work, authority, communications, and planning. The course considers the role of the government executive and analyze the relationship between fiscal procedures and personnel management in organizations. (3-0-3) (S)(C)

PS 353
The Promise and Problems of Policy
Analyzes the policy-making process, including both policy formulation and implementation. Subjects covered include the necessity for policy, environmental factors and their effect on policy-making, the process of policy-making, and a brief introduction to methods of analysis. Same as SOC 353. (3-0-3) (S)(C)

PS 354
Urban Policy
Explores major dilemmas facing cities today, including changing economic and tax bases, fiscal stresses, immigration, marginalized populations, new forms of consumption, and adaptation to structural change. Same as SOC 354. (3-0-3) (S)(C)

PS 356
Law in American Society
Examines the nature of law and the legal system in American society. Special attention will be paid to the institutions of the legal system, how they are supposed to function, and how they actually function. The courts, ranging from the U.S. Supreme Court to local trial courts, are studied. (3-0-3) (S)(C)

PS 360
Globalization: Global Political Economy
Examines the economic, socio-political, and cultural aspects of globalization within the context of contemporary debates about the phenomenon. (3-0-3) (S)(C)

PS 361
Theories of Capitalism
Examines excerpts from the sociological and political literature of capitalism. Themes include labor value, bureaucratic theory, freedom and capitalism, problems of exploitation, class conflicts, status anxiety, and the internationalization of capital. Same as SOC 361. (3-0-3) (S)(C)

PS 362
Technology and Social Change
Examines the social implications of selected emerging and cutting-edge technologies, with an emphasis on recent developments and events. The course investigates the consequences of those technologies on society using both short-term and long-term perspectives. The issues examined include moral, ethical, socioeconomic, and educational considerations. Same as SOC 362. (3-0-3) (S)(C)

PS 365
Introduction to Legal Analysis
Designed to provide upper-level undergraduate students with an introduction to legal analysis and effective legal writing through the preparation of a legal memorandum, judicial opinion, and other written assignments. For students interested in attending law school, this course will bridge the gap between the undergraduate experience and law school. (3-0-3) (S)(C)

PS 373
Politics of Africa
Surveys contemporary African politics in its historical, economic, and cultural context. Both individual country cases and regional issues are examined, and approaches to comparative political analysis are used to understand the causes and consequences of observed patterns of political similarities and differences. (3-0-3) (S)

PS 374
Politics of Europe
Surveys contemporary European politics in its historical, economic, and cultural context. Both individual country cases and regional issues are examined and approaches to comparative political analysis are used to understand the causes and consequences of observed patterns of political similarities and differences. (3-0-3) (S)
PS 375
Politics of Latin America
Surveys contemporary Latin American politics in its historical, economic, and cultural context. Both individual country cases and regional issues are examined, and approaches to comparative political analysis are used to understand the causes and consequences of observed patterns of political similarities and differences.
(3-0-3) (S)

PS 376
Politics of Global Migration
Explores the economic, political, and humanitarian forces that are driving the complex phenomenon of contemporary global migration. The course examines the causes, lived experiences, and consequences of migration, working to acquire a sound understanding of its social, political, legal, and cultural dimensions.
(3-0-3) (S)

PS 385
Topics in Political Science
Investigates a topic of current interest in Political Science, which will be announced by the instructor when the course is scheduled.
(3-0-3) (S)

PS 401
Terrorism, Security and Civil Liberties
Acquaints students with the new kinds of organized violence, the theories and technology of terrorism, and possible policy responses. The impact of the responses to terrorist threats on individual freedom, civil liberties, and security will be closely examined, along with normative issues associated with increases in governmental monitoring and control over individuals.
(3-0-3) (S)(C)

PS 403
Issues in Urban Affairs
Covers selected issues in contemporary urban politics and policy. The seminar relies on student reading and research.
(3-0-3) (S)

PS 408
Methods of Policy Analysis
Introduces students to the field of policy analysis and acquaints them with basic methods of policy analysis and urban planning. Emphasis is on problem solving, rather than on politics or political process. Topics include decision theory, benefit/cost analysis, problem simulation, population projection and problem formulation, and definition.
(3-0-3) (S)(C)

PS 420
Comparative Urban Politics
Compares major urban systems in a variety of settings in both developed and developing countries. The course gives special attention to political and economic factors shaping urbanization processes and distinctive policy issues in these different settings.
(3-0-3) (S)

PS 425
Rhetoric and Narrative in Legal Analysis
Provides students with theoretical material drawn from literary theory and cognitive science on categorizations, narrative, and rhetoric. They read case studies demonstrating how this material provides understanding of legal thinking and can be used to analyze Supreme Court opinions. During the second half of the course, students apply the techniques learned in undertaking their own analysis of judicial opinions, briefs, and testimony of experts. Prerequisites: Instructor’s consent.
(3-0-3) (S)

PS 438
Energy & Environmental Policy
Places energy and environmental policy in domestic and global contexts. The course traces the economic and political implications of dependence on fossil fuels, the attempt to develop alternate energy sources and promote conservation, the environmental effects of resource consumption, and the effort to control these effects by increased efficiency and regulation of pollution. Explored are such problems as nuclear waste, acid rain, global warming, and deforestation.
(3-0-3) (S)

PS 440
Issues in Globalization
Utilizes various perspectives to examine the economic, socio-political, and cultural aspects of globalization within the context of contemporary debates about the phenomenon.
(3-0-3) (S)(C)

PS 442
Race and Ethnicity in International Perspective
Examines the conceptual construction of race and ethnicity in different societies around the world at various eras. The course pays special attention to the causes and consequences of racial and ethnic conflict and cooperation for cultural groups and for public policy. Same as SOC 442.
(3-0-3) (S)(C)

PS 452
Bureaucratic Politics
Analyzes bureaucracy in its social context. The evolution of the theory and practice of bureaucracy as a form of control, coordination, and social order is considered. Government bureaucracies are the focus, with selected examples from other organizations.
(3-0-3) (S)(C)

PS 453
U.S. Regulatory Politics and Policy
Examines the changing role of government regulation of private and public activities from a political and administrative perspective, from the Progressive era to the present. The course investigates the regulatory process, including administrative law, standards for rule-making, and the involvement of organized groups and the courts.
(3-0-3) (S)(C)

PS 455
Political Sociology
Surveys major issues and problems in the field of political sociology. Topics include the forms of political power structures, elitist approaches to politics, community and national power structures, and political socialization. Same as SOC 455.
(3-0-3) (S)(C)
Course Descriptions

PS 462
Issues in American Politics
Intended to develop knowledge and analytical skills to assess how well our government works and how it might work better. The course focuses on the operation of the federal executive, legislative, and judicial institutions, the policy-making process (including the role of administrators), and the power exercised by organized groups, experts, and the media.
(3-0-3) (S)(C)

PS 465
Political Economy
Introduces students to political economy, exploring the relationship between the economy and the political system. The impact of economic ideologies will be examined, as will the structure of political and economic interests and the mediating effects of institutions on outcomes.
(3-0-3) (S)(C)

PS 477
Topics in the Study of Politics
Provides students a reading and seminar course on a selected political topic. Subject matter changes in successive offerings of the course.
(3-0-3) (S)(C)

PS 480
Modeling Complexity
Acquaints students with agent-based modeling and other techniques for understanding the behavior of complex systems. Students learn to construct and test models linking individual behavior and the interaction of individuals to social structures and group behaviors. Same as SOC 480
(3-0-3) (S)(C)

PS 497
Directed Readings in Political Science
Consists of independent reading and analysis, centered on particular problems and supervised by a member of the political science faculty.
(Credit: Variable; maximum 3 credit hours) (S)(C)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

Public Administration

PA 501
Introduction to Public Management

PA 502
Complex Organizations

PA 503
Administrative Law

PA 511
Comparative Public Administration

PA 513
Public Policy Analysis and Evaluation

PA 514
Government Management and Information Systems

PA 522
Public Personnel Administration

PA 531
Governmental Accounting and Budgeting

PA 532
Public Finance

PA 542
Strategic Planning

PA 551
Public Infrastructure

PA 552
Health and Human Services Policy and Administration

PA 553
Public Safety Administration

PA 561
Political Process and Administration

PA 562
Urban and Metropolitan Government

PA 577
Topics in Public Management

Psychology

PSYC 100, 101
Introduction to Profession
Introduction to psychology and social science professions. Topics include problem formulation and career opportunities, spreadsheets and relevant computer applications, as well as data search tools.
(2-0-2); (2-0-2) (C)

PSYC 203
Undergraduate Statistics for the Behavioral Sciences
The objectives of this course are to develop skills in using statistical data analysis commonly used in the behavioral sciences (e.g., descriptive statistics, ANOVA, regression, correlation). At the end of the course students should be able to comprehend statistical research findings, run basic statistical analysis, as well as make inferences from the results. This course is equivalent to BUS 221. Students may not receive credit for both BUS 221 and PSYC 203.
(3-0-3)

PSYC 204
Experimental Psychology and Research Methods
Introduction to experimental methodology in learning, motivation, and psychophysics. Design, performance, and analysis of basic experiments. Prerequisites: PSYC 221 or PSYC 222.
(2-2-3) (N)(C)

PSYC 221
Human Behavior, Growth and Learning
This is one of two courses intended to introduce the basic topics in psychology; they can be taken either independently or in sequence. The survey includes overviews of clinical psychology, social psychology, and personality. Experimental design and ethical issues will also be addressed.
(3-0-3) (S)(C)
PSYC 222
Brain, Mind and Behavior
This is one of two courses intended to introduce the basic topics in psychology; they can be taken either independently or in sequence. The survey includes overviews of cognition, intelligence, neuroscience, aging, and development, as well as controversies in experimental design and ethics.
(3-0-3) (S)(C)

PSYC 238
Professional Skills
Didactic and applied approach to professional skill development in the areas of oral communication, conflict management, and interpersonal dimensions of the work setting.
(3-0-3)

PSYC 301
Industrial Psychology
Survey of practical applications of psychology to problems of business and industry: work, job placement, morale, safety, turnover, absenteeism, and training.
(3-0-3) (S)(C)

PSYC 303
Abnormal Psychology
Survey of the dynamics underlying behavior deviations. Considers therapeutic procedures and psycho-pathology.
(3-0-3) (S)(C)

PSYC 310
Social Psychology
Description and analysis of behavior and experience as determined by social conditions. Includes social issues, human relations, prejudice, and leadership.
(3-0-3) (S)

PSYC 380
Topics in Psychology
An investigation into a topic of current interest in psychology. The specific topic will be announced by the instructor when the course is scheduled. Prerequisite: PSYC 221 or PSYC 222.
(3-0-3) (S)

PSYC 406
History and Systems of Psychology
Historical development of influential psychological systems: structuralism, functionalism, behaviorism, psychoanalysis, and Gestalt psychology. Prerequisite: 12 credit hours of psychology.
(3-0-3) (S)

PSYC 409
Psychological Testing
Survey of current group tests, emphasizing basic concepts, e.g., validity and reliability, as well as practical applications and measurement techniques. Prerequisites: PSYC 221, PSYC 222, PSYC 203.
(3-0-3)

PSYC 410
Vocational Rehabilitation
Historical, philosophical, and legal bases of rehabilitation. Study of vocational, independent living, public and private rehabilitation, service delivery systems, and roles and functions of the practitioner. Prerequisite: PSYC 221.
(3-0-3) (S)(C)

PSYC 411
Medical Aspects of Disabling Conditions
Survey of human organ systems, medical terminology, unique characteristics of disabling conditions, including severe disabilities. Vocational consequences, environmental impact and implications for the rehabilitation process. One of a two-course sequence. Prerequisites: PSYC 221, PSYC 222.
(3-0-3) (N)

PSYC 412
Multicultural and Psychosocial Aspects of Disability
Review of diversity issues in rehabilitation, including culture, disability, gender, aging, socio-economic status, and spirituality and religion. Study of individual and family adaptation and coping processes following disability; psychological and sociological consequences of disability; attitudes toward persons with disabilities; impact of social and environmental barriers. One of a two-course sequence. Prerequisites: PSYC 221, PSYC 222.
(3-0-3) (S)(C)

PSYC 414
Physiological Psychology
An introduction to the biological bases of behavior with an emphasis on the neuroanatomy and neurophysiology of sensory and central nervous systems. Prerequisites: PSYC 221, PSYC 222.
(3-0-3) (N)

PSYC 420
Single-Subject Design and Applied Behavior Analysis
Single-subject experimental designs for the evaluation of environmental variables on behavior of individuals. Applied behavior analysis, precision teaching, and frequency measures for logical inference. Ethical, logical, scientific, and practical aspects of “real-world” experimentation for optimizing performance or learning in education, treatment, and training.
(3-0-3) (S)

PSYC 423
Learning Theory
Seminar course examining major areas of research in learning theory, starting with the behaviorists and gestalt psychologists, and working up to modern examinations of memory, metacognition, evolutionary psychology, and social modeling. Prerequisite: PSYC 222.
(3-0-3) (S)(C)

PSYC 426
Cognitive Processes
This is a seminar course examining major areas of research in cognitive psychology, including attention, perception, memory, language, problem solving, and creativity. Focus within these areas will vary depending on student interest, but throughout the semester we will be drawing connections between the study of the human mind and real-world applications in multiple fields. Prerequisite: PSYC 222.
(3-0-3) (S)

PSYC 431
Measurement of Attitudes
Survey of methods used in attitude scale construction. Development and use of such scales. Multidimensional scaling. Prerequisite: PSYC 203.
(3-0-3)
Course Descriptions

PSYC 435
Early Development
Processes and theories of mental, social, emotional, and physical development of infants, children, and adolescents. Prerequisite: Nine credit hours of psychology or consent of instructor. (3-0-3) (S)

PSYC 436
Adult Development
Explores processes and changes in cognitive, social, physical, and emotional functioning across adult life. Prerequisite: Nine credit hours of psychology or consent of instructor. (3-0-3) (S)

PSYC 449
Practicum in Rehabilitation Services
Seminar and supervised fieldwork experience in a rehabilitation setting with disabled individuals. Emphasizes service delivery, interviewing techniques, and caseload management. Prerequisites: SOC 480, PSYC 410, PSYC 411, and PSYC 412 or concurrent registration. (3-0-3)

PSYC 452
Personality Theory
Survey of personality theories and their application to everyday life. Prerequisites: PSYC 221, PSYC 222. (3-0-3) (S)

PSYC 455
Development and Evaluation of Training Organizations
The goal of this course is to provide the learner with a systems perspective to training in organizations. Through readings, discussions, in class exercises, and project work students will learn to identify organizational issues that can be solved using a training intervention and develop appropriate training. The focus of the course will primarily be on knowledge application. Students will learn about the various steps involved in designing a training program including needs assessment, influence of learner characteristics, transfer of training and evaluation. Through project work students will gain skills in implementing these steps. Prerequisite: PSYC 221 or PSYC 301. (3-0-3)

PSYC 456
Engineering Psychology
Theory of human physical and psychological abilities as they relate to design of transportation, housing, workplace, defense, and recreational systems. Topics include theories relating to psychophysiology, anthropometry, communications, man-machine interactions, training, maintainability, safety, and engineering evaluation. Prerequisites: PSYC 221, PSYC 222. (3-0-3) (S)

PSYC 481
Group & Leadership at Work
The course will review a system model of groups and will discuss developmental stages of groups as they relate to communication behaviors. It will also review various approaches to leadership including individual, contingency, and relationship. The course engages students in various activities to help them become aware of themselves as team members and team leaders. Prerequisites: PSYC 221 and PSYC 301. (3-0-3) (S)

PSYC 482, 483
Undergraduate Research Seminar I, II
An introduction to applied research in psychology. Includes a didactic review of basic and current issues in psychological research as well as an experiential component. Students actively participate in ongoing faculty research programs and are exposed to all areas of research. Prerequisites: PSYC 221, PSYC 222 and PSYC 204; or consent of instructor. (1-2-3)

PSYC 487
Integrative Psychology Seminar I
A synthesis of issues and areas in psychology. Prerequisites: Junior standing, 21 credit hours in psychology, and PSYC 203. (3-0-3)

PSYC 488
Integrative Psychology Seminar II
Seminar integrating seminal and cutting edge psychological writings both empirical and conceptual to address key issues in contemporary psychology. Prerequisites: Junior year standing, 24 credit hours in psychology. (3-0-3)

PSYC 489
Undergraduate Psychology Seminar
Reports and discussion of current problems and issues in psychology. Prerequisites: PSYC 221, PSYC 222 and PSYC 204; or instructor’s consent. (3-0-3) (S)

PSYC 497
Special Problems
Independent study involving compilation and analysis of data bearing on a significant problem. Prerequisites: Junior standing, 21 credit hours in psychology. (Credit: Variable)

GRADUATE COURSES
Graduate Courses are available to degree-seeking undergraduate students with the approval of the course instructor and faculty advisor. See the current IIT Bulletin: Graduate Programs for full descriptions.

PSYC 501
Psychological Foundation of Behavior

PSYC 502
Social Bases of Behavior

PSYC 503
Learning, Cognition and Motivation

PSYC 504
Individual and Cultural Differences

PSYC 513
Assessment in Rehabilitation Counseling

PSYC 523
Introduction to Theories of Psychology

PSYC 529
Personnel Selection and Evaluation

PSYC 545
Graduate Statistics

PSYC 556
Organizational Psychology
SOC 200
Introduction to Sociology
Introduces students to the structure and operation of society. The course analyzes individual behavior and emphasizes the structure and problems of American society. (3-0-3) (S)(C)

SOC 203
Engaging Society
Serves as an advanced, more visual and performative alternative to SOC 200. Students will read short chapters from a standard textbook and prepare weekly assignments that apply the associated concepts and insights. Assignments are varied, from taking photographs and bringing in music and film clips to writing comedy sketches and fictional blog entries, illustrating political cartoons, and designing spaces, devices, and clothing that manifest or illuminate the topics at hand. (3-0-3)

SOC 209
Research Methods in Social and Political Science
Introduces students to explanation in the social sciences and both qualitative and quantitative research methods. Topics covered include the formulation of research questions, measurement, data collection, survey research, significance tests, experimental and quasi-experimental design, sampling, and various techniques of qualitative research. Same as PS 209. (3-0-3) (C)

SOC 210
Social and Political Thought
Examines central social and political theories and their ideas concerning the relationship between the individual and society, social harmony and conflict, social equality, and the role of the state. Same as PS 210. (3-0-3) (S)(C)

SOC 301
Social Dimension of Science
Examines how social and psychological factors influence the reasoning and behavior of scientists. By contrasting traditional views of science with actual scientific practice, the course aims to understand such phenomena as “hype,” resistance to scientific discovery, controversy, vicious competition, error, self-deception, and fraud. (3-0-3) (S)(C)

SOC 302
Science and Belief
Explores the relationship between science and belief by comparing Western science with other belief systems, science with religion, and science with pseudo-science. The course also examines cultural and ideological influences on scientific knowledge and public faith in science. (3-0-3) (S)(C)

SOC 303
Science in Society
Examines the role of the institution of science, scientific knowledge, and scientists in society. The course focuses on areas where science significantly influences and is influenced by political, economic, and cultural institutions and contexts. (3-0-3) (S)(C)

SOC 305
Social Communication
Studies the variety of subtle ways, verbal and nonverbal, in which humans communicate in personal, professional, and public life and how to identify and solve problems and misunderstandings that typically arise. Topics include the social nature of humans, interpersonal communication, interaction within and between groups, team work, leadership, and inter-cultural communication. (3-0-3) (S)(C)

SOC 308
Social Psychology in Society
Explores different aspects of everyday judgments and their sometimes undesirable social consequences, especially the Fundamental Attribution Error. Other topics include various types of group influences on individual judgment and behavior, as well as persuasion, “brainwashing”, helping behavior, and prejudice. The course also briefly covers interpersonal communication and the role of spatial factors in social interaction. (3-0-3) (S)(C)

SOC 311
Social Use of Space
Gives students basic insights into people’s experience of space and the effect of spatial arrangements on people’s behavior. The course explores the differences in conceptions between planners and users and the need to take the user into account in spatial design. Readings cover cognitive, sensory, functional, proxemic, cross-cultural, and symbolic aspects of the built environment. (3-0-3) (S)(C)
Course Descriptions

SOC 312
Contemporary Social Problems
Investigates various “social problems” and how they came to be defined as problematic. General sociological concepts and theoretical perspectives include symbolic interactionism, conflict theory, structural functionalism, and constructionism. Students also examine the role of state advocates and the media in the definition of social problems. Case studies illustrate how different theoretical perspectives lead to different “solutions” and policy recommendations.
(3-0-3) (S)(C)

SOC 321
Sociology of Work
Begins with a brief comparison of the nature, role, and meaning of work across time and space. We continue with a survey of some of today’s most important topics in the study of work, primarily looking at the United States. Same as PS 321.
(3-0-3) (S)(C)

SOC 339
Nuclear Energy and Society
Explores the relationship between nuclear energy and society, giving detailed attention to the discovery of nuclear fission and its exploitation during World War II and after, which culminated in the global nuclear arms race. Examined are the emergence and growth of nuclear power and the controversy over its safety, security, and costs. The class considers the risks of continued proliferation, and the prospects for arms control and the “peaceful atom”. Same as PS 339.
(3-0-3) (S)(C)

SOC 340
Social Organization and Control
Surveys theories explaining the organization and structure of complex societies. The problem of social control, or the capacity of a society to regulate itself formally or informally according to its desired principles, is considered as a central problem of social organization. Same as PS 340.
(3-0-3) (S)(C)

SOC 342
Industrial Society
Examines the historical origin of cities and their present place in society and culture. Important themes include the impact of industrialization and globalization, the significance of racial, ethnic, and economic structures, and the consequences of residential segregation and alternative physical structures of urban areas. The course includes a short fieldwork assignment that introduces student to qualitative methods for studying urban life.
(3-0-3) (S)(C)

SOC 350
Urban Sociology
Examines the historical origin of cities and their present place in society and culture. Important themes include the impact of industrialization and globalization, the significance of racial, ethnic, and economic structures, and the consequences of residential segregation and alternative physical structures of urban areas. The course includes a short fieldwork assignment that introduces student to qualitative methods for studying urban life.
(3-0-3) (S)(C)

SOC 351
Sociology of Education
Analyzes the organization and purpose of schooling in American society, including the historical development of American education, the relationship of schooling to life chances and individual success, the bureaucratic characteristics of schooling, contemporary problems facing American education, and how the U.S. educational system compares with those of other societies.
(3-0-3) (S)(C)

SOC 352
Sociology of Work
Begins with a brief comparison of the nature, role, and meaning of work across time and space. We continue with a survey of some of today’s most important topics in the study of work, primarily looking at the United States. Same as PS 321.
(3-0-3) (S)(C)

SOC 353
The Promise and Problems of Policy
Analyzes the policy-making process, including both policy formulation and implementation. Subjects covered include the necessity for policy, environmental factors and their effect on policy-making, the process of policy-making, and a brief introduction to methods of analysis. Same as PS 353.
(3-0-3) (S)(C)

SOC 354
Urban Policy
Explores major dilemmas facing cities today, including changing economic and tax bases, fiscal stresses, immigration, marginalized populations, new forms of consumption, and adaptation to structural change. Same as PS 354.
(3-0-3) (S)(C)

SOC 356
Transformative Technologies
Focusses on major technological innovations and charts the social transformations that have historically accompanied their introduction. Examples include writing, the plow, the clock, the automobile, and the computer. Attention will be directed to issues of institutional interdependence, the question of technological determinism, and Luddism/resistance.
(3-0-3) (S)(C)

SOC 359
Humans, Ecology and Environment
Examines the relationship between humans and nature, including reasons for some well-known ecological catastrophes in human history. The course traces changing attitudes to the environment and explores various measures that have been offered to solve problems, for instance, the Green Revolution, sustainable development, renewable energy, various “clean” technologies, and the potential social and ecological consequences of these solutions.
(3-0-3) (S)(C)
SOC 361
Theories in Capitalism
Examines excerpts from the sociological and political literature of capitalism. Themes include labor value, bureaucratic theory, freedom and capitalism, problems of exploitation, class conflicts, status anxiety, and the internationalization of capital. Same as PS 361.
(3-0-3) (S)(C)

SOC 362
Technology and Social Change
Examines the social implications of selected emerging and cutting-edge technologies, with an emphasis on recent developments and events. The course investigates the consequences of those technologies on society, using both short-term and long-term perspectives. The issues examined include moral, ethical, socioeconomic, and educational considerations.
(3-0-3) (S)(C)

SOC 371
Occupations and Professions
Considers all factors affecting work, including the transition from school to work, the determinants of earnings and other job benefits, job satisfaction, labor unions and professional associations, class position in American society, the effects of foreign competition, government labor force policies, and the work environment in a comparative perspective.
(3-0-3) (S)(C)

SOC 385
Topics in Social Sciences
Investigates a topic of current interest in Social Sciences, announced by the instructor when the course is scheduled.
(3-0-3) (S)

SOC 403
Issues in Urban Affairs
Covers selected issues in contemporary urban politics and policy. The seminar relies on student reading and research.
(3-0-3) (S)

SOC 420
Managers and Management
Examines the structural constraints and cultural expectations associated with the role of “manager.” Some of the dynamics addressed are distinctions between managers, their employers, and their subordinates; the infiltration of managerial ideology throughout the broader society; constraints on managers’ decision-making processes; currently popular policies and attitudes among managers in business; and experimental employer/management/employee configurations.
(3-0-3) (S)(C)

SOC 422
Complex Organizations
Introduces students to the significant theoretical frameworks that have emerged over time to describe and explain public and non-profit organizations, as well as organizational actors and actions. The course includes consideration of relations between an organization and its environment, the importance of interorganizational networks, and the role of power in organizational life.
(3-0-3) (S)(C)

SOC 431
Development of Sociological Thought
Surveys ideas and issues that have influenced the history of sociology and continue to bear significantly on current theory. The course analyzes major figures, schools of thought, conceptual themes, and controversies.
(3-0-3) (S)(C)

SOC 442
Race and Ethnicity in International Perspective
Examines the conceptual construction of race and ethnicity in different societies around the world at various eras. The course pays special attention to the causes and consequences of racial and ethnic conflict and cooperation for cultural groups, and for public policy. Same as PS 442.
(3-0-3) (S)(C)

SOC 450
Human Nature
Discusses and evaluates the traditional tension between “nature” and “nurture” explanations for human behavior. The course examines recent theories in biology and evolutionary psychology and the compatibility of these with social scientific theory. An important focus will be on recent controversies in biology and anthropology.
(3-0-3) (S)(C)

SOC 454
Gender and Work through Film
Examines the ways that gendered expectations and the opportunities based on them translate into workplace realities for women and men. The goals of the course are to introduce students to the sociological study of gender and work and to help develop the observational and analytical skills necessary to understand what is going on in today’s workplace.
(3-0-3) (S)(C)

SOC 455
Political Sociology
Surveys major issues and problems in political sociology, including the forms of political power structures, elitist approaches to politics, community and national power structure, voting behavior, nation building and modernization, and civil-military relations. Same as PS 455.
(3-0-3) (S)(C)

SOC 480
Modeling Complexity
Acquaints students with agent-based modeling and other techniques for understanding the behavior of complex systems. Students learn to construct and test models linking individual behavior and the interaction of individuals to social structures and group behaviors. Same as PS 480.
(3-0-3) (S)(C)

SOC 481
Understanding Cultures
Familiarizes and sensitizes students to issues of intercultural perception and communication, with particular attention paid to the workplace and business world. The seminar provides a context for understanding cultural difference and different taken-for-granted assumptions about “proper” behavior and the social world. Same as BUS 381.
(3-0-3) (S)(C)

SOC 491
Undergraduate Research in Sociology
Consists of supervised readings or research permitting students to obtain more intensive training in special interest areas of sociology.
(Credit: Variable; maximum 3 credit hours) (C)
Course Descriptions

SOC 496
The Art of the Interview
Includes a class project, guest speakers from various media, and discussion of student efforts regarding: the homework necessary for a good interview, the kinds of questions one can use, external influences and impact on interviews, the value of good conversationalists (and difficult ones), the trials and politics of transcription, and how to create a finished product from interview material.
(3-0-3)

SOC 497
Directed Readings
Consists of independent reading or analysis, centered on particular problems and supervised by a member of the sociology faculty.
(Credit: Variable; maximum 3 credit hours) (S)(C)

SOC 498
Exercises in Behavioral Observation
Provides students with an opportunity to acquire better fieldwork skills by providing a forum for discussing and practicing the craft.
(3-0-3) (S)
Academic Policies and Procedures
Academic Policies and Procedures

Academic Loads

The average full-time academic load during the fall or spring semester is 15-18 credit hours. The minimum registration required for full-time status for those semesters is 12 credit hours. During the summer session, six credit hours is regarded as full-time enrollment for financial aid consideration. Students who wish to enroll for more than 18 credit hours during the fall or spring semester must obtain permission from their academic dean. Students who wish to enroll for more than two courses during the summer must obtain permission from their academic dean. Part-time degree-seeking students who wish to enroll for 9 to 11 credit hours must have permission from their academic dean. Non-degree students requesting a course overload must obtain permission from the Office of Educational Services.

Academic Program Audit

An academic audit provides a summary of a student’s academic status to date and lists the courses to be completed in order to receive a degree. Most undergraduate students who have completed at least 60 semester hours (including applicable transfer credit) will receive an official academic audit from the Office of Educational Services. After receiving their first audit, students may request updates.

Academic Progress, Probation and Dismissal

All students who are degree candidates are expected to maintain satisfactory academic progress. This includes earning satisfactory grade point averages and maintaining a satisfactory rate of progress toward the completion of their degree programs.

Students who do not earn at least a 2.00 cumulative GPA, a 1.85 current GPA, or a 2.00 GPA in their major field are placed on academic probation. Their eligibility for financial aid also will be reviewed.

Degree-seeking students are also required to maintain a satisfactory rate of progress. For full-time students, this means earning a minimum of 12 credit hours per semester applicable to their degrees. For part-time students, a satisfactory rate of progress will enable them to graduate within 12 academic years after achieving degree-seeking status. Students who do not maintain a satisfactory rate of progress in a given semester are placed on probation the following semester. Their eligibility for financial aid also will be reviewed.

Students on probation are not permitted to:

- Register for more than 15 credit hours per semester
- Hold office in any student organization
- Represent the university on any athletic team, student organization or committee
- Participate in the cooperative education program

Students who are on academic probation for two consecutive semesters are subject to dismissal from IIT.

The progress of non-degree students also is reviewed and any student who does not maintain good academic standing is subject to being placed on probation or being dismissed.

A student dismissed by the university can petition the Academic Standing Committee to review his or her case. The student must present substantial academic or other relevant new evidence not available at the time of dismissal in support of the petition for reinstatement. The chair of the Academic Standing Committee will determine whether the new documentation warrants a further review of the case.
Academic Policies and Procedures

Advising

Each undergraduate student is assigned an academic advisor who is available to discuss opportunities and career plans in the student’s chosen field and to plan and approve coursework to meet department and university requirements. Students are urged to consult their advisors when questions arise. The associate chairs of a department (or their counterparts) also offer information on university requirements and academic procedures.

Change of Major or Declaration of Additional Majors

A student who wishes to change or declare a major must obtain a Change of Major Form from the Office of Educational Services. The form must have the signature from the academic unit head of the intended major before being returned to the Office of Educational Services. This form can also be found at www.iit.edu/~edserve/changeofmajor.pdf.

Change of Status

Students who wish to change a classification and/or registration status must complete the applicable procedures listed below no later than two weeks prior to registration (or pre-registration).

- Students changing from full-time degree-seeking status to part-time degree-seeking status must notify the Office of Financial Aid if they are receiving financial aid. International students with student visas must be registered as full-time students and are not permitted to change to part-time status.
- Students changing from part-time degree-seeking status to full-time degree-seeking status must inform their department and obtain the necessary advisor’s approval for a full-time course load. Also, students in this category who wish to apply for financial aid must notify the Office of Financial Aid regarding their change of status.
- Students changing from non-degree status to full-time or part-time degree-seeking status must submit a new application for admission to the Office of Undergraduate Admission. Students must have completed at least one semester of relevant coursework at IIT and must be in academic good standing in order to be eligible for changing their status.
- Students changing from graduate status to undergraduate full-time or part-time status must apply for reinstatement as an undergraduate student in the Office of Educational Services.

Class Attendance

Students may not attend any class unless they are properly registered for that class. (See Payments and Refunds, page 23). All students are expected to attend their classes regularly. Excessive absences may be grounds for a failing grade. Non-attendance does not constitute withdrawal. When illness or emergency requires a student to miss more than two days of class, the student must notify his or her instructor(s). It is also recommended that the student contact the Dean of Students and the Director of Undergraduate Advising.

Code of Academic Honesty

IIT expects students to maintain high standards of academic integrity. Students preparing for the practice of a profession are expected to conform to a code of integrity and ethical standards commensurate with the high expectations society places on practitioners of a learned profession. No student may seek to gain an unfair advantage over another. The Code of Academic Honesty is explained in the IIT Student Handbook and all students are expected to know and adhere to this code.
Credit by Examination

Credit may be earned through one or more of the following examination procedures. Total credit from proficiency examinations and CLEP may not exceed 18 semester hours. There is no limit for advanced placement credit.

Advanced Placement Program

Students who take the AP examinations need to have their official scores sent to IIT. Acceptable credit varies by subject and score.

College Level Examination Program (CLEP)

For these examinations, which are administered by the College Entrance Examination Board, IIT will award credit under the following conditions:
- The CLEP examination and the score achieved meet the standards of the IIT department that offers courses in the area of the examination.
- The CLEP examination is taken before the student enters IIT.
- Students must observe all rules of the College Level Examination Program regarding the taking of CLEP examinations.

NOTE: Previous acceptance of the examination by another institution does not imply acceptance by IIT.

Proficiency Examinations

Any student who believes that, through self-study or outside experience, he or she has gained the substantive equivalent of the content of a specific course may ask for an examination. With the approval of the chair of the department offering the course and the Office of Educational Services, a proficiency examination will be administered. This is a graded exam and the letter grade will be entered on the permanent record. The exam grade is final and repeating the course for a grade change is not permitted. Proficiency examinations are not allowed for courses in which the student has previously enrolled and must be completed before a student’s final 45 semester hours of enrollment at IIT. The Credit by Examination Form may be obtained in the Office of the Registrar and a per-credit-hour fee is charged for each examination.

Dean’s List

Every semester the names of all undergraduate students who have completed at least 12 graded hours without any “D” or “E” grades and who have a semester grade point average of 3.50 or better appear on the Dean’s List.
Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Description</th>
<th>Instructor Assigned</th>
<th>Performance Evaluated</th>
<th>Attempted Hours</th>
<th>Earned Hours</th>
<th>Quality Points</th>
<th>Quality Hours</th>
<th>GPA Hours</th>
<th>FinAid Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>excellent</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>4.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>above average</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>average</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>below average</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>1.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>E</td>
<td>fail</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>I</td>
<td>incomplete</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>R</td>
<td>research</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NA</td>
<td>non-attendance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>S</td>
<td>satisfactory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>U</td>
<td>unsatisfactory</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AU</td>
<td>audit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>W</td>
<td>withdrawal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>X</td>
<td>no grade submitted</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.00</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Grade Notes

- **X** Temporary administrative grade automatically applied to blank grade rosters at grading deadline.
- **AU** Grade basis elected by student at point of registration. A Request to Audit Form must be submitted at the time of registration and courses may not be changed to or from audit after registration. There is no credit given for an audited course. Regular tuition rates apply.
- **I** This temporary grade requested in writing of instructor, by student, prior to week of finals, is automatically posted when the Registrar’s Office receives the approved request. The student must have substantial equity in the course with no more than four weeks of coursework remaining to be completed. The written agreement between the student and instructor must detail the remaining requirements to complete the course. A grade of I will be assigned only in case of illness or for unusual or unforeseeable circumstances that were not encountered by other students in the class and that prevent the student from completing the course requirements by the end of the semester. Grade of I will automatically change to E on the published deadline of the subsequent term.
- **R** Temporary grade indicating course work is scheduled to extend beyond the end of term. Grade of R has same impact as I until final letter grade is submitted. Does not expire or change to another grade.
- **NA** Apparent withdrawal due to non-attendance. Impacts record as a grade of E.
- **W** Permanent administrative grade automatically applied when student withdraws before deadline (60% of term). Grade of W does not affect GPA. No credit hours are awarded for a grade of W.

Grading Procedure

Online submission of final grades begins at the start of finals week. Grades of X are posted for all missing (blank) grades at the end of the term and are resolved through the grade change process. All grade changes are initiated by the instructor of record. Temporary grades of I, R, and X are reported to each academic unit and can be changed by the instructor to a final letter grade. Grades of I or R cannot be changed to another temporary or a non-letter, administrative grade of: I, R, NA, AU, W, or X.
Academic Policies and Procedures

Grade Point Average

The grade point average (GPA) is determined by dividing the total number of grade points earned by the total number of graded semester hours. Graded semester hours include courses graded A, B, C, D, E, and NA. All courses taken at IIT apply to the cumulative GPA, including those that do not apply toward graduation.

Repeating Courses for a Grade Change

Undergraduate students may repeat a course for a change of grade. A Course Repeat Form must be submitted during the registration period. Both grades will be recorded on all transcripts issued. Only the second grade will be used to compute the GPA, even if the second grade is lower, except when the second grade is I, R, S, U, W, X, or AU. The course repeat policy is as follows:

- A course repeated for a grade change must be taken within one calendar year after initial enrollment in that course or the next time it is offered (whichever is longer).
- The same course may be repeated only once for a change of grade.
- No more than three courses may be repeated for a grade change in a student’s career.
- Re-registration for courses in which a student received a passing grade requires the approval of the student’s academic advisor and academic dean.
- If a course is no longer offered by the university, the provision to repeat the course for a grade change does not apply.
- Grades obtained through credit by examination are final and repeating the course for a grade change is not permitted.

Graduate Course Enrollment Approval

An undergraduate degree-seeking student who wishes to enroll in a graduate 500-level course must first obtain written approval from the course instructor and faculty advisor stating that the student is qualified. This approval must be presented at the time of registration. An undergraduate non-degree student may be allowed to enroll in a graduate 500-level course in certain instances, but will require the permission of the Office of Educational Services. All undergraduate students who enroll in graduate courses are governed by the graduate grading system for those courses.
Graduation Requirements

Every student is responsible for fulfilling graduation requirements as specified in the IIT Bulletin in effect at the time of his or her admission to IIT.

If those curriculum requirements change before the student completes a specified degree program, he or she may follow a curriculum in a subsequent IIT Bulletin with the approval of his or her academic unit head.

When an earlier curriculum is no longer available, the individual degree program of a student who has been following this earlier curriculum will be modified by his or her academic unit head.

The student has the ultimate responsibility to fulfill degree requirements, to attain eligibility to enroll in particular courses, and to comply with all applicable academic rules governing his or her academic program.

NOTE: Students must file an Application for Graduation Form with the Office of Educational Services at the beginning of the semester in which they plan to graduate. Failure to do so will result in the postponement of the student’s graduation. Please refer to the IIT calendar on page 3 for specific deadlines.

Students in all undergraduate curricula must complete:
- All required courses in their major program
- Credit hour requirements as appropriate to their major (a minimum of 126 hours)
- General education and special academic requirements as shown on page 27
- Residence requirements as outlined on page 248
- A minimum cumulative grade point average of 2.00 and a minimum grade point average of 2.00 in the student’s major department courses. A student who completes all course requirements with an average below the minimum grade point requirements may, with permission of his or her department chair and academic dean, take additional courses to raise the grade point average
- Completion of all the above within a period of eight calendar years from the semester of initial admission for full-time students or twelve calendar years for part-time students after achieving degree-seeking status. A student may petition their major department and academic dean to have this period extended. If the petition is approved, this extension may involve additional compensating academic requirements
- Payment of all financial obligations to the university

All incomplete coursework must be submitted to the instructor prior to the date of graduation. A recorded grade of “I” (incomplete) in a course required for graduation will result in deferral of that student’s graduation until the next semester. A new application for graduation must be submitted for that semester.

Graduation with Honors

A student must complete a minimum of 60 graded semester hours at IIT in order to receive the award of “summa cum laude”, “magna cum laude”, or “cum laude”. A student who has a grade point average of 3.90 and higher will graduate with “summa cum laude” honors; a student who has a grade point average between 3.80-3.89 will graduate with “magna cum laude” honors; and a student who has a grade point average between 3.50-3.79 will graduate with “cum laude” honors.

Leave of Absence

Full-time students who withdraw from the university with the intention of returning to complete their degree program may apply for a Leave of Absence. All requests for a Leave of Absence must be directed to the Office of Educational Services. This designation cannot exceed one academic year, however, it may be extended if the proper documentation is submitted.

Students on a medical Leave of Absence may be required to have an interview with the Counseling Center prior to resuming their studies.

International students must complete the International Center’s Leave of Absence form and submit a copy to the Office of Educational Services.
Academic Policies and Procedures

Registration

Students are required to be registered for all classes in which they participate, attend and/or submit coursework for evaluation. No credit will be granted for any course for which the student did not properly register before the last day to add a class for the semester. Once the deadline has passed, registration for a course will not be permitted. Students are required to be registered to make use of university facilities. Students who are in an exchange, study abroad or cooperative education program also must be registered for their particular programs.

Residence Requirements

All undergraduate degree-seeking students must observe the following residence requirements:

- Once enrolled at IIT, a student is not permitted to enroll at another institution without obtaining permission. A student must submit an academic petition to the Office of Educational Services for approval prior to registration at another institution.
- A course failed at IIT must be repeated at IIT. No transfer credit will be awarded for any course equivalent to a course failed at IIT.
- The final 45 semester hours of work must be completed in residence at IIT. Any proficiency examinations or enrollment at another institution must be completed before this period.
- A student must complete a minimum of 45 semester hours at IIT in order to be eligible for a bachelor’s degree from IIT.

Second Bachelor’s Degree

A student whose first degree is granted by IIT must complete a minimum of 15 additional credit hours at IIT. A student whose first degree was awarded by another institution must complete a minimum of 45 additional credit hours at IIT. All other graduation requirements apply for the second degree. The GPA required for “summa cum laude”, “magna cum laude”, and “cum laude” for the second degree includes all IIT coursework.

Student Academic Petitions

A student may request a review of decisions concerning academic status or regulations by submitting an academic petition to the Office of Educational Services. Students who wish to take a course at another institution during the summer must submit an academic petition to the Office of Educational Services prior to the registration at another institution to guarantee transfer of credit according to guidelines on page 13.

Transcripts

Official Transcripts are requested through the Office of the Registrar and are only released with the expressed consent and authorization of the student, in compliance with (FERPA) the Family Educational Rights and Privacy Act of 1974. The secured document is certified as of the printing date and is not valid if altered in any way or opened by someone other than the intended recipient. Official Transcripts are released only after the student has fulfilled all financial obligations to the university. Official Transcripts issued directly to the student making the request are stamped “ISSUED TO STUDENT”. A fee is charged for each transcript issued.
Withdrawal from the University

A full-time degree-seeking student who withdraws from all of his or her courses is in effect withdrawing from the university. Non-attendance does not imply withdrawal. A student who withdraws from the university is required to complete the Official Withdrawal Form in the Office of Educational Services. Completion of this form ensures assistance with the successful resolution of all outstanding obligations to the university.

International students who wish to withdraw must follow the procedures of the International Center and bring the required documentation to the Office of Educational Services before completing the Official Withdrawal Form.

A part-time degree-seeking student who withdraws from all of his or her courses is not required to submit an Official Withdrawal Form.

Any undergraduate student who is not in attendance for a semester must apply for reinstatement in the Office of Educational Services.
Campus Resources
Campus Resources

Academic Resource Center

The Academic Resource Center (ARC) is a comprehensive center with a variety of services for students and faculty. The ARC’s mission is to enrich the academic experience through a student-centered approach to learning. The ARC provides peer tutoring in mathematics and the sciences on a drop-in basis.

Undergraduate and graduate peer tutors are available during the fall and spring semesters. In addition to peer tutoring, the ARC also offers exam reviews, group study space, and a computer laboratory.

The ARC is located in the southwest corner of the Hermann Hall Building. The ARC is open Monday through Thursday 10:00 a.m. to 9:00 p.m., Friday, 10:00 a.m. to 3:00 p.m., and Sunday from 6:00 p.m. to 9:00 p.m. For more details, visit the ARC website: arc.iit.edu or call 312.567.5216.

Athletics and Recreation

The Department of Athletics and Recreation offers a comprehensive program of varsity sports, intramural competition, instruction, and informal recreational activities for both men and women. The Scarlet Hawks men's varsity teams compete in intercollegiate baseball, basketball, cross-country, soccer, and swimming; women's varsity teams compete in cross-country, swimming, basketball, soccer, and volleyball. The university is an active member of the National Association of Intercollegiate Athletics (NAIA).

For nonvarsity athletics, intramural and club teams provide spirited competition in basketball, flag football, dodgeball, softball, volleyball, track, soccer, racquetball, and badminton. Recreational activities, open swimming and open free-play activities are all available.

Career Management Center

Located on the upper level of the Galvin Library, the Career Management Center (CMC) offers individual career counseling and testing, résumé critiques, job search assistance, mock interviews, and labor market and salary data. The CMC also facilitates the Cooperative Education and Summer Internship Programs, whereby qualified students gain experience in their field of study prior to graduation. Both programs are options for domestic and international students at the undergraduate or graduate level.

The CMC conducts a variety of professional development workshops on topics including résumé and cover letter writing, job search strategies, and interviewing skills. The CMC also hosts bi-annual career fairs, employer information sessions, and on-campus interviews. Career related resources, articles, workshop schedules, and a link to job postings may be accessed by students and alumni registered in e-Recruiting (www.cmc.iit.edu). Individual sessions with a career counselor may be scheduled by appointment at (312) 567-6800.

Cooperative Education Program

Cooperative education is a learning approach that integrates college studies with professional working experiences in industry, business, or government. Salaries among IIT co-op students are competitive and help defray educational expenses. Frequently the co-op experience improves employment opportunities upon graduation. Full-time IIT students who are in their second through fifth semesters at IIT and who have and maintain at least a 2.5 GPA are eligible to apply for the co-op program.

The cooperative education program uses three established schedules. These schedules are listed at www.cmc.iit.edu.
Part-Time Employment

Part-time employment opportunities may be available for students both on and off campus. Positions may be career related co-ops or internships, Federal Work Study jobs, part-time, or seasonal work. Co-ops, internships and some on campus jobs are posted in the Career Management Center (CMC) e-Recruiting database. Other on-campus positions may be announced directly by individual university departments. Students interested in and eligible for employment off campus in their field of study may get job search assistance from the CMC and must attend an Introduction to Cooperative Education and Internship Workshop conducted by the CMC. Workshop schedules are posted at www.cmc.iit.edu. Appointments for individual career counseling may be made by calling (312) 567-6800.

International students (on F1 visa) are restricted to on-campus employment for their first academic year of study at any school in the United States. After completing one academic year in the country, students on an F1 visa may be eligible for opportunities off-campus (only if related to their field of study) through the Cooperative Education or Summer Internship Programs.

Communication Across the Curriculum Program

The CAC helps students understand the role of writing and speaking in their academic and professional lives. Both on its website (www.cac.iit.edu) and through the IIT Writing Center (see page 258), located in Siegel Hall 232-233, the CAC provides assistance in communication skills for academic inquiry, professional research, and the workplace. The CAC also assists IIT instructors in developing materials relevant to written, oral, electronic, and interpersonal communication in discipline-specific courses—particularly Introduction to the Profession (ITP), communication-intensive courses (C-Courses), and Interprofessional Projects (IPROs). The CAC director also administers IIT’s Basic Writing Proficiency requirement.

Counseling Center

The Counseling Center provides clinical services and outreach programming to IIT students, and consultation to students, staff, faculty and parents of IIT students. Clinical services include evaluation, brief psychotherapy, referral and medication management. The Counseling Center assists students with many issues including loneliness, relationship concerns, family issues, depression, anxiety, concentration problems, sleeping difficulties, eating problems, addiction, career concerns, grieving, sexual concerns, suicide prevention, anger management, cultural adjustment, and other personal issues. Students may meet a Counseling Center therapist as needed on a regular basis. The Counseling Center’s psychiatrist is available to provide medication evaluations. In situations where a student’s treatment needs cannot be effectively met at the IIT CC, we offer referrals to local treatment providers.

Clinical Services are confidential. Information communicated to IIT counselors will not be disclosed to anyone outside the Counseling Center without written consent from the student. There are rare exceptions to this confidentiality policy, such as when a therapist has concerns that an individual is at risk of seriously hurting him/herself or someone else.

There is no charge for therapy services. There is a fee, usually covered by health insurance, for appointments with our psychiatrist.

In addition to individual appointments, the Counseling Center also offers outreach programs to IIT students. Outreach includes workshops on topics such as stress management, time management and overcoming test anxiety. Additionally, the Counseling Center raises awareness of topics such as substance abuse, sexual assault and eating disorders.

The Counseling Center frequently provides consultation to students, staff, faculty and parents of IIT students who may be concerned about a student’s welfare.

Visit www.iit.edu/~cc to learn more about the Counseling Center. To set up a first appointment or to consult with professional staff please call us at 312-808-7132. For emergencies that occur during evenings and weekends, go to your nearest emergency room, dial 911, contact IIT Public Safety at 808-6363, call the IIT Student Assistance Program 24 hour call line at 877-351-7889, or contact the Suicide Hotline at 800-273-TALK.
Campus Resources

Disability Resources

Services for persons with disabilities are coordinated by the Center for Disability Resources. Persons with disabilities who are interested in applying for admission to any of IIT’s educational programs are invited to call the center or to email disabilities@iit.edu prior to their arrival on campus to discuss their individual needs. Enrolled students with disabilities are encouraged to consult the director of the Center for Disability Resources regarding access to IIT facilities.

Educational Services

The Office of Educational Services provides a variety of academic support services for an undergraduate student from the time of admission to graduation. These services include academic advising, evaluation of transfer credits from both United States and international schools; academic program audits; student petitions; change of major; monitoring of academic progress; certification of student’s eligibility for graduation; granting an official Leave of Absence; and official withdrawal from the university. In addition, this office reinstates former undergraduate students to the university. The office maintains the official academic files for all undergraduate students.

Fraternity and Sorority Life

The Greek community at IIT is focused on giving students the chance to learn both inside and outside of the classroom. IIT’s seven fraternities and three sororities uphold their own missions through brotherhood and sisterhood activities. These groups also concentrate heavily on the values of their organizations by participating in regular philanthropic and community service events. Each fraternity and sorority has its own operating structure and allows students to develop valuable leadership and interpersonal skills. Academics and scholarship are an integral part of the Greek system, and the community works hard to uphold rigorous scholastic standards as a part of their daily functioning. Membership is open to both residential and commuter students.

Health Center

The Student Health Center focuses on primary care with a strong emphasis on wellness and patient education. The staff includes nurse practitioners and a registered nurse. All members of the senior staff have advanced degrees and certifications or licenses to practice their specialties. Numerous programs are presented throughout the year to promote health and wellness.

The center can provide diagnosis and treatment of common illnesses and injuries and prescriptions for medication. Both women’s and men’s health care concerns are addressed, including gynecological exams and birth control. Additional services include allergy shots, immunizations, and laboratory testing. Complicated medical cases are referred to the physician who is available on campus for 2 hours, one day per week, or to specialists. The physician is also available for consultation by our staff on an ongoing basis. The health center also manages the student health insurance program.

For emergencies occurring after office hours, the Public Safety Department will transport students to a local hospital emergency room. Health services are confidential, and there is no charge for office visits. Charges may apply for laboratory tests and medications.
International Center

The purpose of the International Center is to promote international education and cultural exchange by (1) supporting international students, faculty, staff and students studying abroad, (2) assisting in the compliance of immigration and other related regulations, (3) providing services and resources to the IIT community. These services include: individual and group orientations to the university and community; assistance with document preparation for employment and other related non-immigrant benefits; workshops for faculty, staff, and students on issues affecting international student and scholars; cross-cultural activities and programs that promote intercultural perspectives and address adjustment issues; study abroad advising for students interested in studying in another country.

All international students, scholars and faculty are required to report to the International Center immediately upon arrival.

Leadership Academy

The Leadership Academy is an integral component of IIT’s interprofessional approach to undergraduate education. Its objectives are to create and implement an effective leadership development curriculum for IIT undergraduate students, to identify and support students with exceptional leadership potential, and to evaluate leadership development outcomes at individual and program levels. Currently, the academy offers scholarships and mentors to the scholarship recipients. It also offers the Sophomore Leadership Retreat, a series of engaging leadership development seminars, which any IIT full-time undergraduate student can attend and earn points toward a certificate in leadership studies.

Libraries

IIT’s libraries include Paul V. Galvin Library; the Center for the Study of Ethics in the Professions (Main Campus); the Graham Resource Center (Main Campus); the Louis W. Biegler Library (Rice Campus); the Downtown Campus Library, serving the Chicago-Kent College of Law and the Stuart School of Business; the National Center for Food Safety & Technology Library (Moffett Campus); and the IIT Archives (Main Campus).

Paul V. Galvin Library

Web site: library.iit.edu

As the university’s central library, Paul V. Galvin Library combines cutting-edge information technology with traditional library services. The library’s holdings include more than 1.1 million volumes, including books, journals, government publications, and microforms. Digital services provide 24-hour Internet access to more than 100 electronic databases indexing millions of journal articles; over 20,000 full text electronic journals; electronic course reserves; and I-Share, a statewide resource sharing consortium of more than 75 academic libraries. Additionally Galvin Library provides web-based delivery of a variety of materials, including documents requested via interlibrary loan. The library’s instruction program serves the IIT community by teaching skills needed to locate, retrieve, and evaluate information. Library instructors teach at all levels from introductory to advanced and cover a broad range of all types of information and retrieval techniques. Library workshops are offered regularly throughout a semester or can be specifically tailored for a course or program by library subject specialists.

Phone number: 312.567.3616

Graham Resource Center

Web site: library.iit.edu/grc

The Graham Resource Center (GRC) is a branch of Galvin Library that serves the College of Architecture. The GRC houses a significant collection of books, journals, images, maps, and architecture-related special collections. The GRC is found on the lower level of S.R. Crown Hall.

Phone number: 312.567.3256
Campus Resources

Louis W. Biegler Library
Web site: library.iit.edu/biegler

The Louis W. Biegler Library, a branch located at the Rice Campus in Wheaton, provides access to a circulating collection, reference materials, and journals, as well as digital access to all databases subscribed to by Galvin Library. Services include interlibrary loan, electronic reserves, web-based document delivery, research consultations, and library instruction.

Phone number: 630.682.6050

Center for the Study of Ethics in the Professions
Web site: library.iit.edu/csep

The Center, located in Hermann Hall, contains a variety of materials dealing with topics in practical and professional ethics, such as autonomy, confidentiality, conflict of interest, and self regulation. The library provides bibliographic assistance to researchers and assists visiting scholars and practitioners.

Phone number: 312.567.6913

Downtown Campus Library
Web site: library.kentlaw.edu

Serving Kent College of Law and IIT’s graduate business program, the Downtown Campus Library (DTC) also includes an extensive collection of U.S. Government, United Nations and European Union documents. The DTC library provides access to digital resources, as well as services such as reference, instruction and interlibrary loan.

Phone number: 312.906.5600

National Center for Food Safety and Technology Library
Web site: library.iit.edu/ncfst

Located on IIT’s Moffett Campus in Summit, the NCFST branch library supports research on food technology and food safety. A depository library for the FAO (Food and Agriculture Organization of the United Nations), the library provides digital access to all of the Galvin Library databases, as well as services such as interlibrary loan, web-based document delivery, and library instruction.

Phone number: 708.563.8163

Multicultural Student Services

The Office of Multicultural Student Services (OMSS) addresses issues of diversity and encourages awareness and respect of all cultures globally. The OMSS serves as a clearing house for data on multicultural issues and assists the IIT community to better understand the issues that confront multicultural students.

Serving as the primary office of advocacy for underrepresented students of color, gay/lesbian, and disabled students, the OMSS offers support services, and educational and social programming aimed at the recruitment, retention, personal and professional development, and success of all IIT students.

Multicultural Student Services will:

- Promote and enhance multicultural opportunities for the campus.
- Prepare students to live and work in an increasingly diverse and global society.
- Create more culturally sensitive climates on the campus and in the surrounding communities.
Residence Life

More than half of IIT’s full-time undergraduates live on campus. The Residence Life Office offers a wide range of programs and services designed to enhance campus life. The office coordinates resident advisors, student security, and the Residence Hall Association. Housing for graduate and married students is available in four campus apartment buildings. Please consult the Housing Office for further information.

Spiritual Life

The Office of Spiritual Life serves students of all faith traditions. Together with student religious organizations and other University offices, the Spiritual Life Office sponsors activities for faith development, worship, socializing and service. It leads efforts in community service, sponsors interfaith learning opportunities on campus, and provides information about religious resources both on and off campus. The Director of Spiritual Life is available to discuss personal or spiritual issues. Contact the Director at 312-567-3160 or spiritual.life@iit.edu.

The Office of Spiritual Life is located in Hermann Hall, Room 113B.

Student Activities

The Office of Student Activities and Orientation provides campus programs that enhance students’ educational experience at the university. This office also coordinates New Student Orientation and student leadership opportunities. The Office of Student Activities and Orientation provides oversight to the IIT Student Government Association (SGA) and all other registered student organizations. These organizations include: the National Society of Black Engineers (NSBE), Latinos Involved in Further Education (LIFE), Union Board (UB), Tech News, Commuter Student Association (CSA), and WIIT Radio. This office also manages the student organization offices (located in the McCormick Tribune Campus Center).

Student Affairs

The Office of the Dean of Students oversees many areas of student life and serves as the primary advocate and ombudsperson for students. The office also manages the student conduct process. Students, faculty and staff are encouraged to contact the office for help or referrals.

Activities outside the classroom and laboratory complement and enhance IIT’s central educational mission. IIT encourages all students to participate in athletics, student organizations and professional societies. Students are also encouraged to take advantage of the cultural, educational, and recreational resources on campus, as well as in the Chicago area. For additional information on activities, organizations and services, consult the IIT Student Handbook.
Campus Resources

Technology Services

The Office of Technology (OTS) supports IIT’s primary technology services including administrative systems, myIIT, network and telephone infrastructure, and distance learning programs. OTS departments include Technology Infrastructure, Systems and Technical Services, Telecommunications, and IIT Online Technical Services. OTS maintains over 400 computers in its classrooms, labs and public terminals throughout Main, Downtown and Rice campuses. The classrooms are used for classes and IIT-organized events. The computers in the classrooms and labs are refreshed on a three-year cycle, to ensure that students have access to equipment that supports their academic activities. The classroom and lab instructional software is reviewed every semester by the IIT Software Committee, and is updated after thorough testing for compatibility with existing hardware and software. OTS supports remote printing from your personal laptop/desktop to a release station located in computer labs and public areas. Additional information about this service is available on the OTS website ots.iit.edu and the MyPrint channel in myIIT.

OTS manages the myIIT web portal my.iit.edu, which provides personalized access to email, online course registration, Blackboard, OTS Support, student life, web links, tools and other content. Supplemental class materials are available through Blackboard, IIT’s course management system, where instructors post lectures, notes and other course information. IIT Online courses and video lectures are also accessed through Blackboard.

The OTS Support Desk is the central point of contact for technology support at IIT. Support Desk staff provide technical troubleshooting, account management, and configuration assistance to students, faculty and staff. OTS Support is available through myIIT, including a knowledge database with how-to information for common technical issues and questions. A request for technical support may be submitted by opening a ticket through the OTS Support tool in myIIT, sending a request via email (supportdesk@iit.edu) or by calling the Support Desk at 312.567.3375 (on-campus ext. 7-DESK).

IIT provides Internet access through its wired and wireless networks. Most Main Campus buildings have wired Internet access and wireless is available in all residence halls and most main campus buildings. Visit the OTS website to view IIT’s current WiFi coverage. Instructions for connecting to the Internet through the IIT network, including how to configure and register your computer, are also available on the OTS website.

Visit the OTS website: ots.iit.edu for most up-to-date information on all technology topics useful details about other services such as e-mail, computer purchasing and software licensing.

Women’s Services and Diversity Education

The Office of Women’s Services and Diversity Education serves a dual function. This office provides programs and services that assist women students. In addition, it also provides diversity education workshops and seminars that help the entire IIT community better understand and appreciate our diverse community.

Writing Center

IIT students can seek assistance with written and oral assignments at the IIT Writing Center, located in Siegel Hall 232-233. Tutors are available to assist students enrolled in writing-intensive courses (Introduction to the Profession, C-courses, and IPROs). Tutors specializing in English as a Second Language are also available to assist students whose primary language is not English. Appointments can be made in advance on the sign-up sheets on Siegel 232-233 doors. Walk-in appointments are also possible when tutors are not working with other students. Tutoring is free of charge, and both undergraduate and graduate students are welcome.
Board of Trustees

Officers

Chairman of the Board
John W. Rowe
Chairman, President and Chief Executive Officer
Exelon Corporation

Vice Chair and Chairman of the Executive Committee
Craig J. Duchossois
Chief Executive Officer
Duchossois Industries, Inc.

Vice Chair and Chair of the Trusteeship Committee
David J. Vitale
Senior Advisor to CEO
Chicago Public Schools

President
John L. Anderson
Illinois Institute of Technology

University Regents

Robert W. Galvin
Chairman Emeritus
Motorola, Inc.

Robert A. Pritzker
President and Chief Executive Officer
Colson Associates, Inc.

M. A. Self
President
Allen Financial, Inc.

Board Members

Bahman Atefi
Chairman and Chief Executive Officer
Alion Science and Technology Corporation

William C. Bartholomay
Vice Chairman
Wills Group Holdings, Inc.

Giuseppe Calabrese
President
Harris myCFO, Inc.

John P. Calamos, Sr.
Founder/Chairman/CEO/CIO
Calamos Asset Management, Inc.

Sherita Ceasar
Vice President
Comcast Cable Communications, Inc.

Martin Cooper
Chairman
ArrayComm, Inc.

Robert A. Cornog

James W. Kiley
President and Chief Executive Officer
Kiley Capital

Thomas E. Lancot
Principal
William Blair and Company

F. Christopher Lee, FAIA
President
Johnson and Lee, Ltd.

Bruce C. Liimatainen
Chairman and Chief Executive Officer
A. Finkl and Sons Company

Göran Lindahl

Dirk Lohan, FAIA
Lohan Anderson, LLC

Paul F. McKenzie
Vice President
Centocor R & D

Victor A. Morgenstern
Chairman
Valor Equity Partners

Anita M. Nagler

Walter Nathan
Chairman
RTC Industries, Inc.

Adrian Nemcek

Satyan Pitroda
Chairman
C-Sam, Inc.
Board of Trustees

Ellen Jordan Reidy
President
America’s Food Technologies, Inc.

John R. Schmidt
Partner
Mayer Brown Rowe and Maw, LLP

Carl S. Spetzler
Chairman
Strategic Decisions Group

Eftimios J. Stojka
Chief Executive Officer
Fast Heat, Inc.

Priscilla Anne Walter
Partner
Drinker, Biddle, and Reath, LLP

Ralph Wanger

Craig M. Watson
Chief Executive Officer
Opti-Pay Technologies, LLC

Efthimios J. Stojka
Chief Executive Officer

Priscilla Anne Walter
Partner

Ralph Wanger

Life Trustees

Vernon Armour
Norbert R. Kaiser
William W. Parks

Bryan R. Dunn
Jules F. Knapp
Robert J. Potter

Alvin L. Gorman
Kaarina Koskenalusta
Carole Browe Segal

Theodore E. Hanson
John H. Krehbiel Jr.
Bernard F. Sergesketter

James Hill Jr.
Richard A. Lenon
William A. VanSanten Jr.

Donald R. Hollis

Trustees Emeritus

Harold A. Bergen
Lewis M. Collens
Werner E. Neuman

Heather Bilandic Black
Albert K. Hawkes
The Honorable Ilana D. Rovner

Robert D. Cadieux
Gordon R. Lohman
Lajos Schmidt

Calvin A. Campbell, Jr.
Thomas L. Martin, Jr.
Raymond C. Tower

S.R. Cho
William B. McCain

IIT Undergraduate Bulletin 2008–2010 261
Administration

President’s Staff

John L. Anderson
Ph.D.
President

David E. Baker
B.A., M.A.
Vice President for External Affairs

John Collins
B.S., M.S., Ph.D., P.E.
Vice President for Business and Administration

Alan W. Cramb
B.S., Ph.D.
Provost and Senior Vice President for Academic Affairs

Elizabeth Hughes
B.A.
Vice President for Institutional Advancement

Leroy Kennedy
B.A.
Vice President for Community Affairs and Outreach Programs

Sandra L. LaPorte
B.A.
Director, Office of the President

David L. McCormick
A.B., M.S., Ph.D.
Vice President and Director, Life Sciences IIT Research Institute

Mary Anne Smith
B.A., M.S., J.D.
Vice President, General Counsel and Secretary

Susan H. Wallace
B.A., M.B.A., C.P.A.
Vice President and Chief Financial Officer

Darsh T. Wasan
B.S., Ph.D.
Vice President for International Affairs

Office of the Provost and Senior Vice President for Academic Affairs

Alan W. Cramb
B.S., Ph.D.
Provost and Senior Vice President for Academic Affairs

Ali Cinar
B.S., M.Eng., Ph.D.
Dean of Graduate College and Vice Provost for Research

Douglas A. Geiger
B.A., M.A.
Dean of Students

Michael R. Gosz
B.S., M.S., Ph.D.
Associate Provost for Undergraduate Affairs

Patricia Grow
Director of Finance

Harvey Kahalas
B.S., M.B.A., Ph.D.
Dean of Stuart School of Business

Noreen M. Kozak
Executive Assistant to the Provost

Harold J. Krent
A.B., J.D.
Dean of Chicago-Kent College of Law

R. Russell Betts
B.A., M.A., M.S., Ph.D.
Dean of College of Science and Letters

M. Ellen Mitchell
B.A., Ph.D.
Dean of Institute of Psychology

Dennis Roberson
B.S., M.S.
Vice Provost for New Initiatives

Donna V. Robertson, FAIA
B.A., M.Arch.
Dean of College of Architecture

Mary Ann Rowan
B.S.Ed., M.S.Ed., Ph.D.
Vice President for Enrollment Management

Christopher Stewart
B.A., M.B.A., M.L.I.S.
Dean of Libraries

Ophir Trigalo
B.A., M.B.A.
Chief Information Officer

Patrick F. Whitney
B.F.A, M.F.A.
Dean of Institute of Design

Office of the Vice President for Enrollment Management

Mary Ann Rowan
B.S.Ed., M.S.Ed., Ph.D.
Vice President of Enrollment Management

Gerald P. Doyle
B.A., M.Ed.
Associate Vice President of Undergraduate Enrollment and Financial Aid

Virginia Foster
B.S., M.S.
Director of Enrollment Management Services

Deborah Gibson
B.S.
Director of Graduate & Professional Admission Operations

Pat Newton-Curran
B.S., M.A.
Director of Graduate & Professional Recruitment

Peter Zachocki
B.A.
Registrar
Administration

Student Affairs

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas A. Geiger</td>
<td>B.A., M.A. Dean of Students</td>
</tr>
<tr>
<td>Erin Gray</td>
<td>B.S., M.S. Director of Fraternity and Sorority Life</td>
</tr>
<tr>
<td>Lee A. Hitchen</td>
<td>B.A., M.B.A. Director of Athletics</td>
</tr>
<tr>
<td>Paul Hubinsky</td>
<td>B.A., M.A. Director of Residence Life</td>
</tr>
<tr>
<td>Melody Jack</td>
<td>Health Service Administration Manager</td>
</tr>
<tr>
<td>Daniel Kaplan</td>
<td>B.A., M.A., Ph.D. Director of Counseling Center</td>
</tr>
<tr>
<td>Lynne Meyer</td>
<td>B.A., M.S. Director of Spiritual Life</td>
</tr>
<tr>
<td>Kathleen Morgan</td>
<td>B.S., M.S. Director, Clinical Services</td>
</tr>
<tr>
<td>Van Pezzello</td>
<td>B.A., M.S. Director of Student Services, Stuart School of Business</td>
</tr>
<tr>
<td>Katherine Murphy Stetz</td>
<td>B.A., M.A. Assistant Dean of Students</td>
</tr>
<tr>
<td>Mary Taylor-Blasi</td>
<td>B.S. Director of Student Activities</td>
</tr>
<tr>
<td>Vickie Tolbert</td>
<td>Administration and Operations Manager</td>
</tr>
</tbody>
</table>

Office of the Vice President and Chief Financial Officer

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan H. Wallace</td>
<td>B.A., M.B.A., C.P.A. Vice President and Chief Financial Officer</td>
</tr>
<tr>
<td>Anne Berenfeld</td>
<td>B.S. Assistant to the Vice President and Chief Financial Officer</td>
</tr>
<tr>
<td>Katherine Scharko</td>
<td>B.S., C.P.A. Associate Vice President and Controller</td>
</tr>
<tr>
<td>David A. Ulaszek</td>
<td>B.A., M.A.B. Associate Vice President, Finance</td>
</tr>
</tbody>
</table>

Office of the Vice President for Business and Administration

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Collins</td>
<td>B.S., M.S., Ph.D., P.E. Vice President for Business and Administration</td>
</tr>
<tr>
<td>Jean Bingham</td>
<td>Associate Vice President of Housing and Auxiliary Services</td>
</tr>
<tr>
<td>Joseph F. Clair</td>
<td>B.S., M.S., P.E. Director, Energy & Sustainability</td>
</tr>
<tr>
<td>Terry Frigo</td>
<td>B.S. Acting Associate Vice President of Facilities, Real Estate and Construction</td>
</tr>
<tr>
<td>Steve Horton</td>
<td>B.A., M.A. Director of Public Safety</td>
</tr>
<tr>
<td>Dion Manly</td>
<td>B.S. Business Analyst</td>
</tr>
<tr>
<td>Margaret Mattson</td>
<td>B.A. Assistant to the Vice President for Business and Administration</td>
</tr>
<tr>
<td>Bruce A. Mueller</td>
<td>B.B.A., M.B.A. Chief People Officer</td>
</tr>
<tr>
<td>Beverly Perret</td>
<td>B.S. Director of Human Resources</td>
</tr>
</tbody>
</table>

Office of Technology Services

<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ophir Trigalo</td>
<td>B.A., B.S., M.B.A. Chief Information Officer</td>
</tr>
<tr>
<td>Virginia Bentley</td>
<td>B.S. Director, Telecommunications</td>
</tr>
<tr>
<td>Louise Hewitt</td>
<td>B.A., M.S.T. Director, IIT Online Technical Services</td>
</tr>
<tr>
<td>James Meyer</td>
<td>B.S., M.S. Director, Systems and Technical Services</td>
</tr>
<tr>
<td>Ibukun Oyewole</td>
<td>B.S., M.B.A. Director, Technology Infrastructure</td>
</tr>
</tbody>
</table>
Administration

Office of the Vice President for Institutional Advancement

Elizabeth Hughes
B.A.
Vice President for Institutional Advancement

Greg Barrett
B.A., M.A.
Associate Vice President, Institutional Advancement

Beth Campbell
B.S., M.B.A.
Assistant Vice President, Institutional Advancement

Steven Lindee
B.A.
Senior Director, Operations

Communications and Marketing

Jeffrey Bierig
B.A., M.A.
Associate Vice President

Kristine Pasto
B.A.
Director of Marketing

Janet Jaffke
B.F.A.
Director, Web Electronic Communications

Chelsea Kalberloh Jackson
B.S.
Director, Editorial

Jon Kavanaugh
Director, Online Content

Denise Moriarty
B.S.
Director of Projects and Special Events

Nancy Schoon
B.S.
Director, Art and Design

Office of the General Counsel

Mary Anne Smith
B.A., M.S., J.D.
Vice President and General Counsel and Secretary

Anthony D. D’Amato
B.A., M.A., J.D.
Associate General Counsel

Candida Miranda
B.A., J.D., M.B.A.
Associate General Counsel and Director, Equal Opportunity and Affirmative Action

Office of the Vice President for International Affairs

Darsh T. Wasan
B.S., Ph.D.
Vice President

Rafael Alvarado
B.S., M.B.A.
Director of Latin American Affairs

Martin Cole
B.S., Ph.D.
Director of National Center for Food Safety and Technology

Mary Dawson
B.S.J.
Associate Vice President for International Affairs

Elizabeth Matthews
B.A., M.Ed.
Director of International Center

Undergraduate Affairs

Michael R. Gosz
B.S., M.S., Ph.D.
Associate Provost for Undergraduate Affairs

Matthew J. Bauer
B.S., M.S.
Director of Undergraduate Academic Advising

Elizabeth A. Lyons
B.A., M.F.A.
Director of Academic Resource Center

Carole Orze
B.S.
Director of Educational Services

April Welch
B.S., B.A., M.A.
Communications Administrator
College of Architecture

Donna V. Robertson, FAIA
B.A., M Arch.
Dean, John H. and Jeanne M. Rowe
Chair

Peter Beltemacchi
B. Arch., M. S.
Associate Dean

Timothy Brown
B.S. Arch.
Director of International Affairs

Matthew Cook
B.A., M.A., M.L.S.
Director of Research Resources

Blake Davis
M.A.
Director of Community Affairs

Faith Kancauskai
Director of Administration and
Financial Affairs

Robert Krawczyk
B. Arch.
Director of Undergraduate Program

John Krigshauer
B.A.
Model Shop Manager

Chris Miller
M.F.A.
Assistant Materials Lab Manager

Richard Nelson
B.A., M Arch.
Director of Buildings and Operations

Sarah Pariseau
B.A., M.A.
Coordinator of Academic Affairs

R. Stephen Sennott
B.A., M.A.
Assistant Dean for Undergraduate
Academic Affairs

Kathryn Snell
Systems Administrator

Kimberly Soss
B.A.
Architecture Library Aide

Armour College of Engineering

Elizabeth Alva
Assistant to the Dean

Marilyn Birden
B.A., M.B.A.
Assistant Dean for Administrative and
External Affairs

John S. Kallend
B.A., M.A., Ph.D.
Associate Dean of Accreditation and
Assessment

Jamshid Mohammadi
B.S., M.S., Ph.D.
Chair of Civil, Architectural and
Environmental Engineering

Margaret M. Murphy
B.A., M.S.
Director of Communications

Mohammad Shahidehpour
B.S., M.S., Ph.D.
Chair of Electrical and Computer
Engineering

Jai Prakash
B.S., M.S., Ph.D.
Acting Chair of Chemical and
Biological Engineering

Vincent Turitto
Chair of Biomedical Engineering and
Director of Pritzker Institute of
Biomedical Engineering

Candace E. Wark
B.S., M.S., Ph.D.
Associate Dean

Jamal S. Yagoobi
B.S., M.S., Ph.D.
Chair of Mechanical, Materials and
Aerospace Engineering
Administration

Chicago-Kent College of Law

Harold J. Krent
A.B., J.D.
Dean

Tara Anderson
B.S., M.P.A.
Director of Alumni Relations

Lori B. Andrews
B.A., J.D.
Associate Vice President and Director of the Institute for Science, Law, and Technology

Katharine K. Baker
B.A., J.D.
Associate Dean

Graeme B. Dinwoodie
LL.B., LL.M., J.S.D.
Associate Dean

Jeanne Kraft
B.S., M.S.
Assistant Dean for Career Services

Lydia Lazar
A.B., M.A., J.D.
Assistant Dean for International Law and Policy Development

Insa Blanke
J.D.
Director of Institutional Projects

Susan M. O’Brien
B.A., J.D.
Assistant Vice President for Communications

Dawn E. Rupcich
B.S.
Assistant Vice President for Administration, Finance, CLE/CPE, and the Center for Law and Computers

Jerry J. Seaton
Registrar and Director of Records and Exams

Francine Soliunas
B.S., J.D.
Director of Student Professional Development

Stephen D. Sowle
B.A., J.D.
Assistant Dean for Academic Administration and Student Affairs

Ronald W. Staudt
B.S., B.A., J.D.
Associate Vice President for Law, Business and Technology

Keith Ann Stiverson
B.S., M.S.L.S., J.D.
Director of the Downtown Campus Libraries

Elizabeth Turley
B.A., J.D.
Assistant Dean for Institutional Advancement

Nicole Vilches
B.A., M.S.Ed.
Assistant Dean for Admissions

Center for Professional Development

C. Robert Carlson
B.A., M.S., Ph.D.
Director of the Center for Professional Development and Academic Director of Information Technology & Management Programs

Barbara Kozi
B.A.
Finance and Special Projects Administrator

Tracey McGee
B.A., M.A.
International Program Manager, Professional Learning Programs

Keith McKee
B.S., M.S., Ph.D.
Director of Industrial Technology and Management Programs

Scott Pfeiffer
B.A., M.B.A.
Director of Outreach

Janet Reif
B.A., M.A.
Program Manager and Short Course Coordinator for Professional Learning Programs

Mazin Safar
B.S., M.S.
Associate Director of Industrial Technology and Management Programs

Ray Trygstad
B.S., M.S.S.M.
Director of Information Technology and Associate Director of Information Technology & Management Programs

Carl Vizza
B.S., M.S.
Director of Professional Learning Programs
College of Science and Letters

R. Russell Betts
B.A., M.A., M.S., Ph.D.
Dean

Fred J. Hickernell
B.A., Ph.D.
Chair of Applied Mathematics

Patrick R. Ireland
B.A., M.P.H., M.A., Ph.D.
Chair of the Department of Social Sciences

M. Ishaque Khan
B.S., M.S., Ph.D.
Associate Dean

Bogdan Korel
B.S., M.S., Ph.D.
Interim Chair of Computer Science

Norman G. Lederman
B.S., M.S., Ph.D.
Chair of Mathematics and Science Education

Kathryn Riley
B.A., M.A., Ph.D.
Chair of Lewis Department of Humanities

Vivian Weil
A.B., M.A., Ph.D.
Director of Center for the Study of Ethics in the Professions

John F. Zasadzinski
B.S., Ph.D.
Chair of Biological, Chemical and Physical Sciences

Graduate College

Ali Cinar
B.S., M.Eng., Ph.D.
Dean and Vice Provost for Research

Robert F. Anderson
B.S., M. Mgmt.
Director of Office of Technology Transfer and Intellectual Property

C. Robert Carlson
B.S., M.S., Ph.D.
Associate Dean and Director of the Rice Campus and Center for Professional Development

Barbara C. Kozi
B.A.
Finance and Special Projects Administrator

Glenn Krell
B.A., M.P.A., C.R.A.
Director of Office of Research Compliance and Proposal Development Office

Keith McKee
B.S., M.S., Ph.D.
Director of Industrial Technology and Management Programs

Sudhakar Nair
B.Sc., M.Eng., Ph.D.
Associate Dean for Academic Affairs

Domenica Pappas
B.S., C.R.A.
Director of Office of Sponsored Research and Programs

Scott Pfeiffer
B.S., M.B.A.
Director of Outreach

Holli Pryor-Harris
A.B., M.P.A.
Assistant Dean of Academic Affairs

Ganesh Raman
B.Tech., M.S., Ph.D.
Associate Dean for Research

Carlo Segre
B.S., M.S., Ph.D.
Associate Dean of Special Projects

Ruth Sweetser
B.A., M.A.
Director of Professional Learning and Business Relations

Institute of Design

Patrick F. Whitney
B.F.A., M.F.A.
Dean

John Grimes
B.A., M.S.
Associate Dean

Hugh Musick
B.A., M.B.A.
Associate Dean

Institute of Psychology

M. Ellen Mitchell
B.A., M.A., Ph.D.
Dean

Roya Ayman
B.A., M.A., Ph.D.
Director of Industrial/Organizational Training Program

Bruce M. Fisher
B.A., M.A., Ph.D.
Director of the Center for Research and Service

Chow S. Lam
B.S., M.S.Ed., Ph.D.
Director of Rehabilitation Program

Scott Morris
B.A., Ph.D.
Assistant Dean

Tamara Goldman Sher
B.A., M.A., Ph.D.
Director of Clinical Training
Stuart School of Business

Harvey Kahalas
B.S., M.B.A., Ph.D.
Dean

Thomas C. Anderson
B.S.B., M.S.
Associate Dean

Siva K. Balasubramanian
B.Sc., M.B.A., Ph.D.
Associate Dean

John Bilson
B.Econ., M.Econ., Ph.D.
Director, M.S. Finance Program

Sanford A. Bredine
B.A., M.B.A.
Associate Director, M.S. Marketing Communication Program

M. Krishna Erramilli
B.Sc., M.Sc., M.B.A., Ph.D.
Director, MBA Program

Eliezer Geisler
Ph.D.
Director, Center for Management of Medical Technology

J. Michael Gorham
B.A., M.A., M.S., Ph.D.
Director, Center for Financial Markets

Loraine Hasebe
B.A.
Director, Career Management Center

M. Zia Hassan
B.S., M.S., Ph.D.
Director, Ph.D. Program

George P. Nassos
B.S., M.S., M.B.A., Ph.D.
Director, M.S. Environmental Management and Sustainability Program and Center for Sustainable Enterprise
Faculty

Year shown indicates initial appointment.

* denotes ROTC Faculty
** denotes CPD Faculty

Kari Aamot
B.A., St. Olaf College; J.D., University of Minnesota Law School
Assistant Professor of Legal Research and Writing, 2002

Snejana I. Abarji
B.S., M.S., The Moscow Institute for Physics and Technology; M.S., Ph.D., Kapitza Institute for Physical Problems; Ph.D., Landau Institute for Theoretical Physics
Associate Professor of Applied Mathematics, 2006

Javad Abbassian
B.S., Abadan Institute of Technology (Iran); M.S., Ph.D., Illinois Institute of Technology; M.B.A., University of Chicago
GTI Associate Professor of Chemical Engineering, 2000

Ivan Acosta*
Capt, USAF;
B.S., Virginia Tech; M.B.A., Webster University
Assistant Professor of Aerospace Studies, 2006

Susan Johanne Adams
B.A., M.A., University of Wisconsin; J.D., Valparaiso University School of Law
Professor of Legal Research and Writing, Associate Director of the Legal Research and Writing Program and Director of Writing Services, 1993

Nader Aderangi
B.S., University of Tehran (Iran); M.S., University of Colorado; Ph.D., Illinois Institute of Technology
Senior Lecturer of Chemical Engineering and Director of the Undergraduate Laboratory, 1997

Andre B. Adler
B.S., State University of New York-Binghamton; M.S., Purdue University; Ph.D., University of Florida
Associate Professor of Applied Mathematics, 1988

Gady Agam
B.S., M.S., Ben-Gurion University
Associate Professor of Computer Science and Graduate Program Director, 2000

Said Al-Hallaj
B.S., M.S., Jordan University of Science and Technology; Ph.D., Illinois Institute of Technology.
Research Professor of Chemical Engineering, 2000

Jeremy Alexis
B.Arch., Illinois Institute of Technology; M.Des., IIT Institute of Design
Assistant Professor of Design, 2005

Mark Anastasio
B.S., Illinois Institute of Technology; M.S.E., University of Pennsylvania; M.S., University of Illinois-Chicago
Associate Professor of Biomedical Engineering, and Undergraduate Program Director, 2001

John L. Anderson
B.S., University of Delaware; Ph.D., University of Illinois, Urbana-Champaign
Professor of Chemical Engineering and President of the Illinois Institute of Technology; 2007

Paul R. Anderson
B.S., Purdue University; M.S., University of California-San Diego; Ph.D., University of Washington
Associate Professor of Environmental Engineering, 1986

Thomas C. Anderson
B.S.B., M.S., University of Minnesota
Clinical Associate Professor of Management and Associate Dean, 2006

Lori B. Andrews
B.A., Yale College; J.D., Yale Law School
Distinguished Professor of Law and Director of the Institute for Science, Law and Technology, 1994

Tricha Anjali
B.S., M.S., Indian Institute of Technology; Ph.D., Georgia Institute of Technology
Assistant Professor of Electrical and Computer Engineering, 2004

Hamid Arastoopour
B.S., Abadan Institute of Technology (Iran); M.S., Ph.D., G.E., Illinois Institute of Technology
Henry R. Linden Professor of Engineering, 1979

David Arditi
B.S., M.S., Middle East Technical University (Turkey); Ph.D., Loughborough University (England)
Professor of Civil and Architectural Engineering, 1981

Konstantinos Arfanakis
B.S., University of Athens (Greece); M.S., Ph.D., University of Wisconsin-Madison
Associate Professor of Biomedical Engineering, 2003

Shlomo Argamon
B.S., Carnegie-Mellon University; M.S., Ph.D., Yale University
Associate Professor of Computer Science, 2002

Guillermo E. Atkin
B.S., Universidad F. Santa Maria (Chile); Ph.D., University of Waterloo (Canada)
Associate Professor of Electrical and Computer Engineering, 1986

Bernadette Atuahene
B.A., University of California-Los Angeles; M.P.A., Harvard University; J.D., Yale Law School
Assistant Professor of Law, 2005

Roya Ayman
B.A., M.A., Ph.D., University of Utah
Professor of Psychology and Director of Industrial/Organizational Training Program, 1983

Patricia A. Bach
B.A., B.S., University of Michigan;
Ph.D., University of Nevada-Reno
Assistant Professor of Psychology, 2004

Kimberly Bailey
B.A., Indiana University; J.D., University of Michigan Law School
Assistant Professor of Law, 2007

Katharine K. Baker
B.A., Harvard-Radcliffe College; J.D., University of Chicago Law School
Professor of Law and Associate Dean, 1993

Siva K. Balasubramanian
B.S., M.B.A., Osmania University;
Ph.D., State University of New York at Buffalo
Stuart Professor of Marketing and Associate Dean, 2008

Martin L. Bariff
B.S., M.A.S., Ph.D., University of Illinois, Urbana-Champaign
Associate Professor of Information Management, 1983

Ralph Lipsey Barnett
B.S., M.S., Ph.D., Illinois Institute of Technology
Professor of Mechanical and Aerospace Engineering, 1969

Felice Batlan
B.A., Smith College; J.D., Harvard Law School; Ph.D., New York University
Assistant Professor of Law, 2006
Faculty

Matthew J. Bauer
B.S., M.S., Illinois Institute of Technology
Senior Lecturer of Computer Science and Director of Undergraduate Computer Science Programs, and Director of Undergraduate Academic Advising, 1996

Matthew J. Bauer
B.A., University of Minnesota-Duluth; M.S., Ph.D., Georgetown University Assistant Professor of Linguistics, 2006

A. Mattox Beckman, Jr.
B.S., Ph.D., University of Illinois, Urbana-Champaign
Senior Lecturer of Computer Science, 2003

Peter Phillip Beltemacchi
B.S., M.S., Illinois Institute of Technology Associate Professor of City and Regional Planning, Associate Dean of the College of Architecture, 1967

Mark R. Benz*
Lt. Col., USAF
B.S., Duke University; M.A., Eastern Washington University Professor of Aerospace Studies, 2006

Zaur Berkaliev
M. Sc., Ph.D., Moscow State University; Ph.D., Indiana University Assistant Professor of Mathematics and Science Education, 2004

Matthew I. Bernstein
B.A., Arizona State University; J.D., IIT Chicago-Kent College of Law Clinical Associate Professor of Law, 2004

R. Russell Betts
B.A., M.A., Oxford University; M.S., Ph.D., University of Pennsylvania Professor of Physics and Dean of the College of Science and Letters, 2008

Tomasz Bielecki
M.Sc., Ph.D., Warsaw School of Economics Professor of Applied Mathematics, 2003

John Bilson
B.Econ., M.Econ., Monash University-Melbourne (Australia); Ph.D., University of Chicago Professor of Finance and Director of M.S. Finance Program and Ph.D. in Management Science for Finance, 2005

William A. Birdthistle
B.A., Duke University; J.D., Harvard Law School Assistant Professor of Law, 2006

Sandra Whaley Bishnoi
B.S., Ph.D., University of Texas Assistant Professor of Chemistry, 2005

Virgil Bisticceanu
B.S., M.S., Polytechnic Institute of Bucharest Instructor in Computer Science, 1993

Richard J. Bonaccorsi
B.A., DePaul University; Master of International Management Thunderbird University; Ph.D., Case Western Reserve University Director of Program Development, MPA Program and Senior Lecturer, Department of Social Sciences, 2004

Suresh Borkar
B. Tech., Indian Institute of Technology (India); M.S., Ph.D., Illinois Institute of Technology Senior Lecturer of Electrical and Computer Engineering, 2006

C.F. Zachariah Boukydis
B.A., University of Toronto (Canada); M.S., University of London (England); Ph.D., Pennsylvania State University Clinical Associate Professor of Psychology, 2008

Mark Wallace Bowman*
B.S., U.S. Army
B.A., North Central College; M.A., Chicago State University Assistant Professor of Military Science, 2007

James M. Braband
B.S., University of Notre Dame; M.B.A., University of Chicago Senior Lecturer of Entrepreneurship, 2006

Jouan G. Brankov
Diploma, University of Belgrade (Serbia); M.S., Ph.D., Illinois Institute of Technology Assistant Professor of Electrical and Computer Engineering, 2008

Charles Braucher
B.F.A., School of the Art Institute of Chicago; B.Arch., Illinois Institute of Technology Instructor of Architecture, 2004

Sanford Bredine
B.A., Trinity College; M.B.A., University of Chicago Senior Lecturer of Marketing Communication and Associate Director of the Marketing Communication Program, 2003

Helen D. Brest van Kempen
B.A., George Washington University; M.A., University of Utah; J.D., Illinois Institute of Technology Instructor of Business Writing, 2003

Eric M. Brey
B.S., M.Eng., University of Louisville; Ph.D., Rice University Assistant Professor of Biomedical Engineering and Assistant Dean for Undergraduate Research, 2004

Ralph L. Brill
B.A., J.D., University of Illinois, Urbana-Champaign Professor of Law, 1961

Glenn Broadhead
B.A., Los Angeles State College; M.A., Ph.D., University of California-Davis Associate Professor of English, 2000

Thomas E. Brock
B. Arch., University of Cincinnati; M. Arch., University of Pennsylvania Assistant Professor of Architecture, 2003

Evelyn Brody
B.A., Yale University; J.D., Columbia University Professor of Law, 1992

Bartram S. Brown
B.A., Harvard University; J.D., Columbia University; Ph.D., Graduate Institute of International Studies (Switzerland) Professor of Law and Co-Director of the Program in International and Comparative Law, 1991

Gerald Brown
B.S.C., DePaul University; J.D., University of Chicago Clinical Professor of Law and Director of Graduate Program in Taxation, 1990

Marshall Brown
B.A., Washington University-St. Louis; M.A.U.D., M.Arch., Harvard University Director of International Affairs, College of Architecture and Assistant Professor of Architecture, 2008

Timothy Brown
B.S.Arch., Clemson University; M.Arch., University of Illinois-Chicago Director of International Affairs and Studio Associate Professor of Architecture, 1990

Jeffrey S. Budiman
B.S., Bandung Institute of Technology (Indonesia); M.S., Illinois Institute of Technology; Ph.D., University of Colorado-Boulder Associate Professor of Civil and Architectural Engineering, 1986

Grant Byrd Bunker
B.A., Evergreen State College; Ph.D., University of Washington Professor of Physics, 1991

Brant Cage
B.S., University of West Florida; Ph.D., Florida State University Assistant Professor of Chemistry, 2007
Lidia Calcatera
B.S., University of Buenos Aires; Ph.D., New York University
Lecturer of Chemistry, 2007

Roland Calia
B.A., University of Redlands; M.A., Claremont Graduate School; Ph.D., University of Chicago
Visiting Assistant Professor of Political Science, 2006

Gruia Calinescu
M.S., University of Bucharest (Romania); Ph.D., Georgia Institute of Technology
Associate Professor of Computer Science, 2000

C. Robert Carlson
B.A., Augustana College; M.S., Ph.D., University of Iowa
Professor of Computer Science, Associate Dean of the Graduate College, Director of the Rice Campus and the Center for Professional Development, and Academic Director of Information Technology and Management Programs, 1984

Kevin Cassel
B.S., Messiah College; M.S., Ph.D., Lehigh University
Associate Professor of Mechanical and Aerospace Engineering and Associate Chair for Graduate Programs, Department of Mechanical, Materials, and Aerospace Engineering, 1996

Anthony Castle*
Lt., USN
B.S., University of Pittsburgh
Assistant Professor of Naval Science

John Cesarone
B.S., M.S., University of Illinois; Ph.D., Northwestern University
Lecturer of Mechanical Engineering, 1999

Howard Stuart Chapman
B.S., J.D., University of Illinois, Urbana-Champaign
Professor of Law, 1971

Gregory S. Chaudoin
B.S., University of Louisville; M.S., University of Illinois
Instructor of Finance, 2005

Yu Cheng
B.E., M.E., Tsinghua University (China); Ph.D., University of Waterloo (Canada)
Assistant Professor of Electrical and Computer Engineering, 2006

Edward Chlebus
M.S., Ph.D., Cracow University (Poland)
Industry Associate Professor of Computer Science, 2001

Donald J. Chmielewski
B.S., Illinois Institute of Technology; M.S., Ph.D., University of California-Los Angeles
Associate Professor of Chemical Engineering and Associate Chair of Graduate Affairs, 2000

Sungjoon Cho
LL.B, M.P.A., Seoul National University; LL.M., University of Michigan Law School; S.J.D., Harvard Law School
Associate Professor of Law, 2003

Ken Choi
B.S., M.S., KyungHee University (Korea); Ph.D., Georgia Institute of Technology
Assistant Professor of Electrical and Computer Engineering, 2007

Hyun-soon Chong
B.S., M.S., KyungHee University; Ph.D., University of North Texas
Assistant Professor of Chemistry, 2003

Igor Cialenco
B.S., Ph.D., Moldova State University; M.S., Ph.D., University of Southern California
Assistant Professor of Applied Mathematics, 2007

Konstantin Cigularov
B.S., University of Economics (Bulgaria); M.S., East Central University; Ph.D., Colorado State University
Assistant Professor of Psychology, 2008

Ali Cinar
B.S., Robert College (Turkey); M.Eng., Ph.D., Texas A & M University
Professor of Chemical Engineering, Vice Provost for Research, and Dean of the Graduate College, 1982

Herek L. Clack
B.S., Massachusetts Institute of Technology; Ph.D., University of California-Berkeley
Associate Professor of Mechanical and Aerospace Engineering and Faculty Director for Office of Multicultural Student Services Retention Programs, 1999

Addam Clark*
Lt., USN
B.A., Texas
Assistant Professor of Naval Science, 2008

Liam Coffey
B.A., Trinity College (Ireland); Ph.D., University of Chicago
Associate Professor of Physics, 1990

Lew Collens
B.S., M.A., University of Illinois, Urbana-Champaign; J.D., University of Chicago
Professor of Law and President Emeritus of Illinois Institute of Technology, 1970

Jeffrey C. Collins*
Lt. Col., U.S. Army
B.S., Vanderbilt University; M.A., U.S. Naval War College
Professor of Military Science, 2007

Susan Conger-Austin
B.A., Stanford University; M.Arch., Princeton University
Assistant Professor of Architecture and Thesis Director, 1993

Richard James Conviser
B.S., J.D., University of California-Berkeley; Dr. Jur., University of Cologne (Germany)
Professor of Law, 1973

Douglas J. Cork
B.S., M.S., Ph.D., University of Arizona
Professor of Biology, 1980

Patrick Corrigan
B.S., Creighton University; M.A., Roosevelt University; Psy.D, Illinois School of Professional Psychology
Professor of Psychology, 2005

Daniel T. Coyne
B.A., University of Illinois-Chicago; J.D., The John Marshall Law School
Clinical Associate Professor of Law, 2005

Alan W. Cramb
B.Sc., University of Strathclyde (Scotland); Ph.D., University of Pennsylvania
Professor of Materials Science and Engineering, Provost and Senior Vice President for Academic Affairs, 2008

Melinda Cupps
B.A., Ohio State University; J.D., University of Virginia School of Law
Visiting Assistant Professor of Law, 2006

James R. Dabbert
B.A., M.S., Indiana University
Senior Lecturer of English and Director of Humanities Writing Center, 1989

Carol Davids**
B.S.E.E., Cornell University; M.I.T.M., Illinois Institute of Technology
Todd Professor of Information Technology and Management and Director, Center for Professional Development VoIP Laboratory, 2005

Blake Davis
M.A., Illinois Institute of Technology
Instructor of City and Regional Planning and Director of Community Affairs, College of Architecture, 2004
Faculty

Michael Davis
B.A., Western Reserve University;
M.A., Ph.D., University of Michigan
Professor of Philosophy, 1986

Elizabeth De Armond
B.S., Georgia Institute of Technology;
J.D., University of Notre Dame Law School;
LL.M. Harvard Law School
Assistant Professor of Legal Research and Writing, 2003

Rhonda E. de Freitas
B.A., Florida International University;
J.D., Loyola University of Chicago
School of Law
Assistant Clinical Professor of Law, 2008

Eduardo De Santiago
B.S., Illinois Institute of Technology;
M.S., Ph.D., Stanford University
Senior Lecturer of Civil and Architectural Engineering, 1997

Johnathan P. Decatorsmith
B.A., University of Illinois; J.D., University of Colorado School of Law
Clinical Assistant Professor of Law, 2000

Paul Henry DeForest
B.S., Ph.D., Georgetown University
Associate Professor of Political Science, 1969

Dirk Denison
B. Arch., M.B.A., Illinois Institute of Technology; M. Arch., Harvard University
Associate Professor of Architecture, 1988

Jennifer Kang Derwent
B.A., M.S., Ph.D., Northwestern University
Associate Professor of Biomedical Engineering and Director of Neural Engineering, 2001

Joshua M. Dickman
B.S., University of Virginia; J.D., University of Virginia School of Law
Visiting Assistant Professor of Law, 2008

Graeme B. Dinwoodie
LL.B., University of Glasgow (Scotland); LL.M., Harvard Law School; J.S.D., Columbia Law School
Professor of Law, Associate Dean, and Director of the Program in Intellectual Property Law, 2000

Jinqiao Duan
B.S., Wuhan University (China); M.S., University of Massachusetts-Amherst; Ph.D., Cornell University
Professor of Applied Mathematics, 2000

Elizabeth Durango-Cohen
B.S., Sonoma State University; M.S., Ph.D., University of California-Berkeley
Assistant Professor of Operations Management, 2005

John Durbrow
B.Arch., B.A., Rice University
Assistant Professor of Architecture, 2003

Mitchell S. Dushay
B.A., Brown University; Ph.D., Brandeis University
Assistant Professor of Biology, 2008

Warren Stanley Edelstein
B.A., Lehigh University; M.A., Duke University; Ph.D., Brown University
Professor of Applied Mathematics, 1965

Howard C. Eglit
B.A., University of Michigan; J.D., University of Chicago
Professor of Law, 1975

Suzanne Ehrenberg
B.A., Williams College; J.D., University of Chicago Law School
Professor of Legal Research and Writing, 2004

Eric C. Ellingsen
B.A., DePauw University; M.A.L.A., St. John's College; M.Arch., M.A.L.A., University of Pennsylvania
Senior Lecturer of Architecture, 2006

J. Kemp Ellington
B.S., Appalachian State University; M.S., Ph.D., North Carolina State University
Assistant Professor of Psychology, 2007

Robert B. Ellis
B.S., M.S., Virginia Tech; Ph.D., University of California-San Diego
Assistant Professor of Applied Mathematics, 2005

Mahjoub Elnineiri
B.S., University of Khartoum (Sudan); M.S., University of London, Imperial College (England); Ph.D., Northwestern University
Professor of Architecture and Director of Doctorate Program, 1989

Tzilla Elrad
B.S., The Hebrew University (Israel); M.S., Syracuse University; Ph.D., Technion Israel Institute of Technology (Israel)
Research Professor of Computer Science, 1982

Ali Emadi
B.S., M.S., Sharif University of Technology (Iran); Ph.D., Texas A & M University
Professor of Electrical and Computer Engineering, 2000

The Honorable David A. Erikson
B.A., Northern Illinois University; J.D., The John Marshall School of Law
Associate Director of the Trial Advocacy Program and Senior Instructor of Law, 1983

Krishna Erramilli
M.S., M.B.A., University of Poona (India); Ph.D., University of Arkansas
Professor of Marketing and Director, MBA Program, 2007

Paul Fagette
B.A., M.A., Ph.D., California State University-Riverside
Senior Lecturer of Biomedical Engineering, 2001

Dale Edwin Fahnstrom
B.F.A., M.F.A., University of Illinois, Urbana-Champaign
Professor of Design, 1966

Gregory E. Fasshauer
Diplom., Universität Stuttgart (Germany); M.A., Ph.D., Vanderbilt University
Associate Professor of Applied Mathematics, Associate Chair, and Director of Undergraduate Studies, 1997

Susan G. Feinberg
B.A., University of Michigan; M.A., University of Louisville; Ph.D., Kent State University
Professor of English and Co-Director of Graduate Studies, 1980

Martin Felsen
B.Arch., Virginia Polytechnic Institute; M.S., Columbia University
Studio Associate Professor of Architecture, 1996

Ted L. Field
B.A., University of Illinois-Chicago; J.D., The John Marshall Law School
Visiting Assistant Professor of Law, 2006

Alexander J. Flueck
B.S., M.E., Ph.D., Cornell University
Associate Professor of Electrical and Computer Engineering, 1996

Kimberly G. Fluet
B.S., Spring Hill College; M.Ed., Florida Atlantic University; Ph.D., Cornell University
Assistant Professor of Mathematics and Science Education, 2006

Frank Flury
M.Arch., Diplom., University of Karlsruhe (Germany)
Associate Professor of Architecture, 2000
Ophir Frieder
B.S., M.S., Ph.D., University of Michigan
IITRI Professor of Computer Science, 1998

Laurence Friedman
B.S., University of Wisconsin; Ph.D., Rensselaer Polytechnic Institute
Senior Lecturer of Physics, 2006

David W. Gatchell
A.B., Bowdoin College; Ph.D., Boston University
Lecturer of Biomedical Engineering and Assistant Director of the Pritzker Institute, 2008

Eliezer Geisler
B.A., M.B.A., Tel Aviv University (Israel); Ph.D., Northwestern University
Distinguished Professor of Organizational Behavior, 1999

David J. Gerber
B.A., Trinity College; M.A., Yale University; J.D., University of Chicago
Distinguished Professor of Law and Co-Director of the Program in International and Comparative Law, 1982

David Gidalevitz
B.S., M.S., Urals Technical University (Russia); Ph.D., Weizmann Institute of Technology (Israel)
Assistant Professor of Physics, 2004

Dimrit Gidaspow
B.Ch.E., The City College of New York; M.Ch.E., Polytechnic Institute of Brooklyn; Ph.D., Illinois Institute of Technology
Distinguished Professor of Chemical Engineering, 1962

Ellen Glassman
B.A., M.A., University of Cincinnati;
Ph.D., Northwestern University
Instructor of Art and Architectural History, 2007

Alan Glodowski
B.S., University of Wisconsin; M.S., Creighton University
Senior Lecturer of Physics, 2006

Douglas W. Godfrey
B.A., M.A., University of Illinois, Urbana-Champaign; J.D., University of Michigan Law School
Associate Professor of Legal Research and Writing, 1998

Nazli Goharian
B.S., Dortmund University; M.S., George Mason University; Ph.D., Florida Institute of Technology
Clinical Associate Professor of Computer Science, 2000

Joel D. Goldhar
B.Ch.E., Rensselaer Polytechnic Institute; M.B.A., Harvard University;
D.B.A., George Washington University
Professor of Operations and Technology Management, 1983

Richard J. Gonzalez
B.A., Northwestern University; J.D., Ohio State University College of Law
Clinical Professor of Law, 1988

David Goodman
B.A., B.S., Cornell University;
M.Arch., Harvard University
Visiting Assistant Professor of Architecture, 2007

Ruthanna Gordon
B.A., Hampshire College; M.A., Ph.D., State University of New York at Stony Brook
Assistant Professor of Psychology, 2004

Michael Gorham
B.A., University of Notre Dame; M.S., University of Florida; M.S., Ph.D., University of Wisconsin
Industry Professor of Finance and Director, Center for Financial Markets, 2002

Michael R. Gosz
B.S., Marquette University; M.S., Ph.D., Northwestern University
Associate Professor of Mechanical and Materials Engineering and Associate Provost for Undergraduate Affairs, 1996

Sanford N. Greenberg
A.B., Princeton University; J.D., George Washington University; M.A., Ph.D., University of California-Berkeley
Associate Professor of Legal Writing, 1994

Judith Gregory
B.A., Antioch College; Ph.D., University of California-San Diego
Assistant Professor of Design, 2005

John Ricks Grimes
B.A., University of Illinois, Urbana-Champaign; M.S., IIT Institute of Design
Associate Dean and Professor of Photography, 1974

William J. Grimshaw
B.A., University of Chicago; M.A., Ph.D., University of Illinois, Urbana-Champaign
Professor of Political Science, 1978

Vivien C. Gross
B.A., Northwestern University; M.A., University of Illinois, Urbana-Champaign; J.D., Indiana University Law School
Clinical Professor of Law, 1979

David Grossman
B.S., Clemson University; M.S., American University; Ph.D., George Mason University
Associate Professor of Computer Science, 1999

Philip Norman Hablutzel
B.A., Louisiana State University; M.A., J.D., University of Chicago
Professor of Law, 1971

Connie Hall
B.S., M.S., University of California-San Diego; Ph.D., University of Memphis
Senior Lecturer of Biomedical Engineering, 2001

Charles T. Hamilton
B.S., M.A.S., Ph.D., University of Illinois, Urbana-Champaign; Certified Public Accountant
Clinical Associate Professor of Accounting, 1991

David K. Hamilton
B.A., M.A., Brigham Young University; Ph.D., University of Pittsburgh
Visiting Assistant Professor of Public Administration, 2008

Jon Hanrath
Ph.D., Michigan State University
Senior Instructor of Computer Science, 2002

Sarah K. Harding
B.A., McGill University (Canada); LL.B., Dalhousie University (Canada);
B.C.L., Oxford University (England); LL.M., Yale Law School
Associate Professor of Law, 1995

Victoria M. Harmon
B.A., Northern Illinois University; M.A., Roosevelt University
Visiting Assistant Professor of Psychology, 2008

Kevin Patrick Harrington
B.A., Colgate University; M.A., Ph.D., Cornell University
Professor of Architectural History, 1978

Edward C. Harris
B.A., Loyola University-Chicago; J.D., Chicago-Kent College of Law
Visiting Associate Professor of Law and Director, LLM in International and Comparative Law, 2004

Geoffrey Harris
A.B., Ph.D., University of Chicago
Assistant Professor of Finance, 2007

Steven L. Harris
B.A., J.D., University of Chicago
Professor of Law, 1996
M. Zia Hassan
B.Sc., University of Panjab (Pakistan); M.S., Ph.D., Illinois Institute of Technology
Dean Emeritus, Professor of Management Science and Director of Ph.D. Program in Management Science, 1960

Steven J. Heyman
A.B., Harvard College; J.D., Harvard Law School
Professor of Law, 1989

Fred J. Hickernell
B.A. Pomona College; Ph.D., Massachusetts Institute of Technology
Professor of Applied Mathematics and Chair, 2005

Thomas H. Hill
A.B., Dartmouth College; J.D., New York University School of Law, LL.M., Columbia University School of Law
Visiting Professor of Law, 2007

Timothy Holbrook
B.S., North Carolina State University; J.D., Yale Law School
Associate Professor of Law and Associate Director of the Program in Intellectual Property Law, 2000

Cynthia Hood
B.S., Rensselaer Polytechnic Institute; M.S., Stevens Institute of Technology; Ph.D., Rensselaer Polytechnic Institute
Associate Professor of Computer Science and Engineering and Associate Chair, 1996

Joyce Hopkins
B.A., McGill University; M.A., Tufts University; Ph.D., University of Pittsburgh
Associate Professor of Psychology, 1992

Gerald Horn
Studio Professor of Architecture, 1997

David Charles Hovey
B.Arch., M.S., Illinois Institute of Technology
Associate Professor of Architecture, 1969

Andrew J. Howard
B.A., Pomona College; Ph.D., University of California-San Diego
Associate Professor of Biology, 1995

James E. Hunt*
Capt., USAF
B.A., Rutgers University
Assistant Professor of Aerospace Studies, 2006

Margaret Hellie Huyck
A.B., Vassar College; M.A., Ph.D., University of Chicago
Professor of Psychology, 1969

Patrick R. Ireland
B.A., University of Notre Dame; M.P.H., University of Texas; M.A., Ph.D., Harvard University
Professor of Political Science and Chair, Department of Social Sciences, 2007

Thomas Charles Irving
B.Sc., M.Sc., Ph.D., University of Guelph (Canada)
Professor of Biology and Physics, 1994

Margot Iverson
B.Sc., Yale College; Ph.D., University of Minnesota
Assistant Professor of History, 2007

Peter Y. Johnson
B.S., University of Illinois-Urbana-Champaign; Ph.D., Massachusetts Institute of Technology
Professor of Chemistry, 1976

Harvey Kahlas
B.S., Boston University; M.B.A., University of Michigan; Ph.D., University of Massachusetts
Professor of Business Administration, Director of the Center for Strategic Competitiveness, and Dean of the School of Business, 2006

John Scott Kallend
B.A., M.A., Ph.D., Cambridge University (England)
Professor of Materials Engineering, Associate Chair for Undergraduate Programs of the Mechanical, Materials, and Aerospace Engineering Department, and Associate Dean for Accreditation and Assessment, 1978

Derek Kamper
B.S., Dartmouth College; M.S., Ph.D., Ohio State University
Assistant Professor of Biomedical Engineering, 2005

Daniel M. Kaplan
B.A., Haverford College; Ph.D., State University of New York-Stony Brook Professor of Physics, 1994

Sanjiv Kapoor
Ph.D., University of Illinois, Urbana-Champaign
Professor of Computer Science, 2001

Chris Karidis
B.Arch., Illinois Institute of Technology Studio Professor of Architecture, 1974

Hemanshu Kaul
B.Sc., St. Stephen’s College (India); M.Sc., Indian Institute of Technology (India); Ph.D., University of Illinois, Urbana-Champaign
Assistant Professor of Applied Mathematics, 2006

Thomas M. Kearns
B.Arch., Iowa State University
Assistant Professor of Architecture, 2003

Sean Keller
B.A., M.Arch., Princeton University; Ph.D., Harvard University
Assistant Professor of Architecture, 2007

Pamela Kentra
B.A., University of Illinois, Urbana-Champaign; J.D., IIT Chicago-Kent College of Law
Clinical Professor of Law, 1995

Alireza Khaligh
B.S., M.S., Sharif University of Technology (Iran); Ph.D., Illinois Institute of Technology
Assistant Professor of Electrical and Computer Engineering, 2007

Nasrin R. Khalili
B.Sc., M.S., Ph.D., Tehran University (Iran); Ph.D., Illinois Institute of Technology
Associate Professor of Environmental Management, 1995

M. Ishaque Khan
Ph.D., Indian Institute of Technology (India)
Professor of Chemistry and Associate Dean, College of Science and Letters, 1994

Hyeong-Il Kim
B.E., M.E., Dan Kook University (Korea); Ph.D., Illinois Institute of Technology
Senior Lecturer of Architecture, 2006

Joohee Kim
B.S., M.S., Yonsei University (Korea); Ph.D., Georgia Institute of Technology
Lecturer of Electrical and Computer Engineering

Jeffrey Kimont
B.S.E.E., Midwest College of Engineering; M.S., North Central College
Industry Associate Professor of Information Technology and Management, 1994

Richard Kling
B.A., University of Illinois-Chicago; J.D., Northwestern University School of Law
Clinical Professor of Law, 1981

Thomas William Knowles
B.S., Purdue University; M.B.A., Ph.D., University of Chicago
Professor of Management Science, 1969

Noah J. Komnick*
Maj., U.S. Marine Corps
B.S., Illinois Institute of Technology
Assistant Professor of Naval Science and Marine Officer Instructor, 2006
Faculty

Bogdan Korel
M.S., Technical University of Kiev; Ph.D., Oakland University
Associate Professor of Computer Science and Acting Chair, 1994

George Koutsogiannakis
B.S., M.S., M.B.A., DePaul University; M.S., Illinois Institute of Technology
Instructor of Computer Science, 2000

Edward M. Kraus
B.A., University of Michigan; J.D., Georgetown University Law Center
Clinical Associate Professor of Law, 1999

Robert J. Krawczyk
B.Arch., University of Illinois-Chicago
Associate Professor of Architecture and Director of the Undergraduate Program, 1991

Harold J. Krent
A.B., Princeton University; J.D., New York University School of Law
Professor of Law and Dean, 1994

Mahesh Krishnamurthy
B.E., Amrawati University (India); M.S., University Missouri-Rolla; Ph.D., University of Texas-Arlington
Assistant Professor of Electrical and Computer Engineering, 2008

Ronald Krueck
B.Arch., Illinois Institute of Technology
Studio Professor of Architecture, 1992

Eva Kultermann
B.Arch., University of Arkansas; M.S., Oxford Brooks University
Assistant Professor of Architecture, 2004

Vijay Kumar
M.S., Illinois Institute of Technology
Associate Professor of Design, 2002

Robert Franklin Ladenson
B.A., University of Wisconsin; Ph.D., The Johns Hopkins University; J.D., DePaul University
Professor of Philosophy, 1969

Chow S. Lam
B.S., M.S.Ed., University of Wisconsin-Whitewater; Ph.D., University of Wisconsin-Madison
Distinguished Professor of Psychology and Director of Rehabilitation Program, 1985

Zhiling Lan
B.S., Beijing Normal University (China); M.S., Chinese Academy of Sciences (China); Ph.D., Northwestern University
Assistant Professor of Computer Science, 2002

Peter David Land
A.A. Dipl., M. Arch., Carnegie Institute of Technology; M.C.P., Yale University
Professor of City and Regional Planning, 1976

Frank Lane
B.A., St. Leo College; M.H.S., University of Florida
Assistant Professor of Psychology, 2006

Patrick T. Larsen*
Lt., USN
B.S., U.S. Air Force Academy
Assistant Professor of Naval Science, 2008

Jonathan Larson
B.A. Western Illinois University; M.S., Southern Illinois University; Ed.D., Roosevelt University
Clinical Assistant Professor of Psychology, 2006

Gary S. Laser
B.B.A., J.D., University of Miami
Associate Professor of Law and Director of Clinical Education, 1975

Laurie E. Leader
A.B., Washington University; J.D., Cleveland-Marshall College of Law
Clinical Professor of Law, 1999

Judith S. Lederman
B.A., Rhode Island College; M.S., Rochester Institute of Technology; M.C.P., Yale University
Senior Lecturer of Mathematics and Science Education and Director of Teacher Education, 2001

Leon Lederman
B.A., City College of New York; Ph.D., Columbia University
Pritzker Professor of Science, 1992

Norman G. Lederman
B.S., M.S., Bradley University; M.S., New York University; Ph.D., Syracuse University
Professor and Chair, Mathematics and Science Education, 2001

Eun-jeong Lee
B.A., M.A., The Catholic University of Korea; Ph.D., University of Wisconsin-Madison
Assistant Professor of Psychology, 2007

Christopher Leslie
B.A., University of California-Los Angeles; M.F.P., Harvard University; J.D., University of California-Berkeley
Professor of Law, 1998

Wu-Hon Leung
Ph.D., University of California-Berkeley
Industry Professor of Computer Science, 2006

Shuwang Li
B.E., Tongji University (China); M.S., Ph.D., University of Minnesota
Assistant Professor of Applied Mathematics, 2008

Xiang-Yang Li
B.E., Tsinghua University; M.S., Ph.D., University of Illinois
Associate Professor of Computer Science, 2000

Xiaofan Li
B.A., Zhejiang University (China); M.A., Ph.D., University of California-Los Angeles
Associate Professor of Applied Mathematics and Director of Graduate Studies, 1999

Zonghui Li
B.S., Shanghai Jiaotong University; B.E., Chang’an University (China); M.S., Ph.D., Purdue University
Assistant Professor of Civil and Architectural Engineering, 2004

Zuyi Li
B.S., Shanghai Jiaotong University; M.S., Tsinghua University; Ph.D., Illinois Institute of Technology
Assistant Professor of Electrical and Computer Engineering, 2004

Jianwen Liao
B.S., Northeast University (China); M.B.A., People’s (Renmin) University of China (China); Ph.D. Southern Illinois University-Carbondale
Associate Professor of Entrepreneurship, 2006

Bill Lidsinsky**
B.S., M.S., Illinois Institute of Technology; M.B.A., University of Chicago
Todd Professor and Director, Center for Professional Development Computer Forensics and Security Laboratory, 2002

Henry Robert Linden
B.S., Georgia Institute of Technology; M.Ch.E., Polytechnic Institute of Brooklyn; Ph.D., Illinois Institute of Technology
Max McGraw Professor of Energy and Power Engineering and Management and Director of Energy & Power Center, 1954

James W. Longworth
B.S., Ph.D., Sheffield University (England)
Associate Professor of Physics, 1983

Arthur Richard Lubin
B.S., Michigan State University; M.A., Ph.D., University of Wisconsin
Associate Professor of Applied Mathematics, 1975

Peter G. Lykos
B.S., Northwestern University; Ph.D., Carnegie Institute of Technology
Professor of Chemistry, 1955
Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas J. MacTavish</td>
<td>B.A., Central Michigan University; M.A., University of Iowa; M.A., University of Michigan Visiting Associate Professor of Design, 2008</td>
</tr>
<tr>
<td>Martin H. Malin</td>
<td>B.A., Michigan State University; J.D., George Washington University Professor of Law and Director of the Institute for Law and the Workplace, 1980</td>
</tr>
<tr>
<td>Harry Francis Mallgrave</td>
<td>B.E.S., M.Arch., University of Detroit; Ph.D., University of Pennsylvania Associate Professor of Architecture, 2005</td>
</tr>
<tr>
<td>Braja K. Mandal</td>
<td>B.Sc., University of Calcutta (India); M.Sc., M.Tech., Ph.D., Indian Institute of Technology Professor of Chemistry, 1991</td>
</tr>
<tr>
<td>Nancy S. Marder</td>
<td>B.A., Yale University; M.Ph., University of Cambridge; J.D., Yale Law School Professor of Law, 1999</td>
</tr>
<tr>
<td>David Maslanka</td>
<td>B.A., St. Xavier University; M.S., Ph.D., Illinois Institute of Technology Senior Lecturer in Applied Mathematics, 1992</td>
</tr>
<tr>
<td>Anjo Mathew</td>
<td>B.Arch., Birla Institute of Technology (India); M.Des.S., Harvard University Assistant Professor of Design, 2008</td>
</tr>
<tr>
<td>William Maurer</td>
<td>B.S., University of Illinois; M.S., Keller Graduate School of Management Industry Associate Professor of Industrial Technology & Management, 1994</td>
</tr>
<tr>
<td>David L. McCormick</td>
<td>B.A., Middlebury College; Ph.D., New York University Professor of Biology and Vice President and Director, IIT Research Institute, 1979</td>
</tr>
<tr>
<td>Keith E. McKee**</td>
<td>B.S., M.S., Ph.D., Illinois Institute of Technology Director of Industrial Technology and Professor in Center for Professional Development, 1993</td>
</tr>
<tr>
<td>Thomas J. McLeish</td>
<td>B.A., B.S., Ball State University; M.S., Massachusetts Institute of Technology Studio Assistant Professor of Architecture, 2006</td>
</tr>
<tr>
<td>Fred R. McMorris</td>
<td>B.S., Beloit College; M.A., University of California; Ph.D., University of Wisconsin-Milwaukee Professor of Applied Mathematics, 1999</td>
</tr>
<tr>
<td>Alan Mead</td>
<td>B.A., M.A., Ph.D., University of Illinois, Urbana-Champaign Assistant Professor of Psychology, 2006</td>
</tr>
<tr>
<td>Kevin P. Meade</td>
<td>B.S., M.S., Illinois Institute of Technology; Ph.D., Northwestern University Professor of Mechanical Engineering, 1982</td>
</tr>
<tr>
<td>Ahmed Cherif Megri</td>
<td>B.S., Institute of Civil Engineering of Constantine; M.S., Ph.D., Thermal Engineering Centre of INSA (France) Senior Lecturer of Civil and Architectural Engineering, 2000</td>
</tr>
<tr>
<td>Rajendra Mehta</td>
<td>B.S., M.S., Gujarat University (India); Ph.D., University of Nebraska Professor of Biological Sciences and Head of the Carcinogenesis and Chemoprevention Division IIT Research Institute, 2004</td>
</tr>
<tr>
<td>Nick Menhart</td>
<td>B.Sc., Ph.D., University of Waterloo (Canada) Associate Professor of Biology, 2000</td>
</tr>
<tr>
<td>Dori Mensah**</td>
<td>B.A., University of Illinois, Urbana-Champaign; B.A., Northeastern Illinois University Instructor of English as a Second Language, Center for Professional Development, 2008</td>
</tr>
<tr>
<td>Daniel Z. Meyer</td>
<td>B.A., Swarthmore; Ed.M., Harvard University; Ph.D., Cornell University Assistant Professor of Mathematics and Science Education, 2005</td>
</tr>
<tr>
<td>Jonathan Miller</td>
<td>B.A., Yale University; M.F.A., New York University Studio Associate Professor of Architecture, 1994</td>
</tr>
<tr>
<td>M. Ellen Mitchell</td>
<td>B.A., Hamilton/Kirkland College; Ph.D., University of Tennessee Professor of Psychology, Dean of Institute of Psychology, and Deputy Dean of the Institute of Science, Law and Technology, 1987</td>
</tr>
<tr>
<td>David Mogul</td>
<td>B.S., Cornell University; M.S., Ph.D., Northwestern University Associate Professor of Biomedical Engineering, 2002</td>
</tr>
<tr>
<td>Jamshid Mohammadi</td>
<td>B.S., M.S., University of Teheran (Iran); M.S., Ph.D., University of Illinois, Urbana-Champaign Professor of Civil and Architectural Engineering and Chair, 1979</td>
</tr>
<tr>
<td>Charles Morgan*</td>
<td>Maj., USAF B.S., Mary Hardin-Baylor Assistant Professor of Aerospace Studies, 2005</td>
</tr>
<tr>
<td>Scott Morris</td>
<td>B.A., University of Northern Iowa; M.S., Ph.D., University of Akron Associate Professor of Psychology and Assistant Dean, 1993</td>
</tr>
<tr>
<td>Timothy Irwin Morrison</td>
<td>B.A., Western Michigan University; Ph.D., University of Illinois, Urbana-Champaign Professor of Physics and Director of the Center for Synchrotron Radiation Research and Instrumentation, 1987</td>
</tr>
<tr>
<td>Demetrios J. Moschandreas</td>
<td>B.S., Stetson University; M.S., University of Kentucky; M.S., Ph.D., University of Cincinnati Professor of Environmental Engineering and Associate Chair for Environmental Engineering Programs, 1991</td>
</tr>
<tr>
<td>Sheldon Mostovoy</td>
<td>B.S., Ph.D., Illinois Institute of Technology Associate Professor of Mechanical and Materials Engineering, 1972</td>
</tr>
<tr>
<td>Ralph T. Muehlelsen</td>
<td>B.S., University of Wisconsin-Madison; Ph.D., Pennsylvania State University Assistant Professor of Civil and Architectural Engineering, 2003</td>
</tr>
<tr>
<td>Suzanne Mueller</td>
<td>B.A., University of Rochester; M.B.A., University of Chicago Senior Lecturer of Business and Associate Director, Administration of Undergraduate Programs, 2003</td>
</tr>
<tr>
<td>Allan S. Myerson</td>
<td>B.S., Columbia University; M.S., Ph.D., University of Virginia Phillip Danforth Armour Professor of Engineering, 2000</td>
</tr>
<tr>
<td>Hassan M. Nagib</td>
<td>B.S., M.S., Ph.D., Illinois Institute of Technology John T. Retallack Distinguished Professor of Mechanical and Aerospace Engineering, 1971</td>
</tr>
<tr>
<td>Kathleen S. Nagle</td>
<td>B.A., Williams College; M.Arch., Harvard University Studio Associate Professor of Architecture, 2003</td>
</tr>
</tbody>
</table>
Sheldon Harvey Nahmod
A.B., University of Chicago; LL.B., LL.M., Harvard University
Distinguished Professor of Law and Co-Director of the Institute for Law and the Humanities, 1977

Sudhakar E. Nair
B.Sc., Regional Engineering College (India); M.E., Indian Institute of Science; Ph.D., University of California-San Diego
Professor of Mechanical and Aerospace Engineering and Associate Dean for Academics in Graduate College, 1977

Philip G. Nash
B.S., City College of London Polytechnic; Ph.D., Queen Mary College of London University (England)
Professor of Materials Engineering and Director of Thermal Processing Technology Center, 1981

George P. Nassium
B.S., University of Illinois, Urbana-Champaign; M.S., M.B.A., Ph.D., Northwestern University
Industry Associate Professor of Environmental Management, Director of Environmental Management Program and Center for Sustainable Enterprise, 2006

Richard Nelson
B.A., M.Arch., Washington University-St. Louis
Studio Associate Professor of Architecture, 1993

William J. Newman, Jr.
B.S., Virginia Tech; M.S., University of Connecticut; M.S. Education, Trenton State College; Ph.D. Purdue University
Assistant Professor of Mathematics and Science Education, 2003

Diep Nguyen
B.S., Ph.D., McGill University
Senior Lecturer of Chemistry and Director of the Professional Science Masters Program in Analytical Chemistry, 2006

Martina Nieswandt
Ph.D., Christian-Albrechts-Universität zu Kiel (Germany)
Associate Professor of Mathematics and Science Education, 2007

Alexander Nikolov
B.S., Ph.D., University of Sofia (Bulgaria)
Research Professor of Chemical Engineering, 1991

Christina E. Nippert-Eng
B.A., State University of New York at Cortland; M.A., Temple University; Ph.D., State University of New York-Stony Brook
Associate Professor of Sociology and Associate Chair of the Department of Social Sciences, 1994

Kenneth Eugene Noll
B.S., Michigan Technological University; M.S., Ph.D., University of Washington
Professor of Environmental Engineering, 1975

James E. Novak
B.S., M.S., Illinois Institute of Technology
Senior Lecturer of Engineering Graphics, 1967

John Richard O’Leary
B.S., M.S., Illinois Institute of Technology; Ph.D., University of Texas-Austin
Associate Professor of Civil and Architectural Engineering and Associate Chair for Civil and Architectural Engineering Programs, 1980

Michael K. Ong
B.S., University of the Philippines; M.A., M.S., Ph.D., State University of New York at Stony Brook
Professor of Finance, 2003

Emmanuel C. Oparaa
B.Sc., University of Nigeria; M.Sc., University of Surrey (England); Ph.D., University of London
Research Professor of Biomedical Engineering, 2005

Joseph Orgel
B.Sc. (Hons), Ph.D., Stirling University
Assistant Professor of Biology, 2005

Erdal Oruklu
B.S., Technical University of Istanbul (Turkey); M.S., Bogazici University (Turkey); Ph.D., Illinois Institute of Technology
Assistant Professor of Electrical and Computer Engineering, 2006

Peter Osler
B.S., University of Michigan; M.L.A., M.Arch., Harvard University
Assistant Professor of Architecture and Director of M.L.A. Program, 2007

James E. Otis*
Cpt., U.S. Navy
B.S., Michigan State University; M.S., George Washington University; M.A., Naval War College
Professor of Naval Science, 2006

Charles Owen
B.S., Purdue University; M.S., IIT Institute of Design
Professor of Research, Institute of Design, 1965

Krishna Reddy Pagilla
B.E., Osmania University (India); M.S., University of Oklahoma; Ph.D., University of California-Berkeley
Professor of Environmental Engineering, 1995

Georgia Papavasiliou
B.S., Ph.D., Illinois Institute of Technology
Assistant Professor of Biomedical Engineering, 2004

Satish J. Parulekar
B.Ch.E., University of Bombay (India); M.S., University of Pittsburgh; Ph.D., Purdue University
Professor of Chemical Engineering and Associate Chair of Undergraduate Affairs, 1985

Matthew M. Peet
B.S., University of Texas at Austin; M.S., Ph.D., Stanford University
Assistant Professor of Mechanical Engineering, 2008

Michael Pelsmajer
B.A., Williams College; M.S., Ph.D., University of Illinois, Urbana-Champaign
Associate Professor of Applied Mathematics, 2002

Víctor Pérez-Luna
B.S., M.S., University of Guadalajara (Mexico); Ph.D., University of Washington
Associate Professor of Chemical Engineering, 2000

Henry H. Perrett, Jr.
S.B., S.M., Massachusetts Institute of Technology; J.D., Georgetown University Law Center
Professor of Law and Director of the Graduate Program in Financial Services Law, 1997

Boris S. Pervan
B.S., University of Notre Dame; M.S., California Institute of Technology; Ph.D., Stanford University
Associate Professor of Mechanical and Aerospace Engineering, 1999

Scott Peters
B.A., Macalester College; J.D., Washington University; Ph.D., University of Illinois-Chicago
Senior Lecturer of Political Science, 1993

Paul Pettigrew
B.S., University of Illinois, Urbana-Champaign; M.Arch., Massachusetts Institute of Technology Studio Associate Professor of Architecture, 2006

William Phillips
B.A., Culver Stockton; M.A., University of Wisconsin
Instructor of English as a Second Language, Stuart School of Business, 2005
David Pistru B.S., Western Michigan University; M.A., DePaul University; Ph.D., University of Bucharest; Ph.D., Universitat Autonoma de Barcelona
Coleman Chair in Entrepreneurship and Industry Associate Professor of Business, 2005

Tracie R. Porter B.A., Cornell College; J.D., Drake University Law School
Visiting Assistant Professor of Law, 2006

Margaret M. Power B.A., Georgetown University; M.A., San Francisco State University; Ph.D., University of Illinois
Associate Professor of History and Chair of the Pre-Law Advisory Committee, 2000

Jai Prakash B.S., M.S., Master of Philosophy, University of Delhi (India); Ph.D., Case Western Reserve University
Professor of Chemical Engineering and Acting Chair, 1998

Greg Prygrocki B.I.D., University of Manitoba (Canada); M.V.A., University of Alberta (Canada)
Associate Professor of Design, 1987

Gregory J. Pulliam B.A., Memphis State University; M.A., Ph.D., University of Missouri
Senior Lecturer of English, Director of English as a Second Language Programs, Undergraduate Advisor, and Associate Chair, 1993

Xiaoping Qian B.S., M.S., Huazhong University of Science and Technology (China); Ph.D., University of Michigan
Assistant Professor of Mechanical and Aerospace Engineering, 2005

Ganesh Raman B.T., Indian Institute of Technology (India); M.S., Cleveland State University; Ph.D., Case Western Reserve University
Associate Professor of Mechanical and Aerospace Engineering and Associate Dean of the Graduate College for Research, 1999

Vijay K. Raman B.E., Annamalai University (India); Ph.D., University of Connecticut
Assistant Professor of Chemical Engineering, 2005

Edward M. Reingold B.S., Illinois Institute of Technology; M.S., Ph.D., Cornell University
Professor of Computer Science, 2000

Dietmar Rempfer M.S., Ph.D., Universitat Stuttgart (Germany)
Associate Professor of Mechanical and Aerospace Engineering, 2001

Kui Ren B.E., M.E., Zhejiang University (China); Ph.D., Worcester Polytechnic Institute
Assistant Professor of Electrical and Computer Engineering, 2007

Shangping Ren Ph.D., University of Illinois, Urbana-Champaign
Assistant Professor of Computer Science, 2003

Benjamin R. Riley B.A., Illinois Institute of Technology
Assistant Professor of Architecture, 1999

Kathryn Riley B.A., University of Maryland; M.A., University of Maryland; Ph.D., Louisiana State University
Professor of English and Chair of the Lewis Department of Humanities, 2004

Dennis Roberson B.S., Washington State University; M.S., Stanford University
Research Professor in Computer Science and Vice Provost for New Initiatives, 2003

Donna V. Robertson B.A., Stanford University; M.Arch., University of Virginia
Professor of Architecture, John H. and Jeanne M. Rowe Chair, and Dean of the College of Architecture, 1996

Christopher Rockey B.S., M.Arch., University of Illinois
Assistant Professor of Architecture, 2008

Peter Roesch Ingenieur fur Hochbau, Staatsbauschule Coburg (Germany); M.S. Arch., Illinois Institute of Technology
Studio Associate Professor of Architecture, 1980

John Ronan B.S., University of Michigan; M.Arch., Harvard University Graduate School of Design
Associate Professor of Architecture, 1992

César F. Rosado Marzan B.A., Haverford College; M.A., Ph.D., Princeton University; J.D., University of Pennsylvania
Visiting Associate Professor of Law, 2008

Mark D. Rosen B.A., Yale College; J.D., Harvard Law School
Professor of Law, 1999

Howard Arnold Rubin B.S., Massachusetts Institute of Technology; Ph.D., University of Maryland
Professor of Physics and Associate Chair, 1966

David Stewart Rudstein B.S., LL.M., University of Illinois, Urbana-Champaign; J.D., Northwestern University
Professor of Law and Co-Director of the Program in Criminal Litigation, 1973

Francisco Ruiz B.S.M.E., Universidad Politecnica de Madrid (Spain); M.E., Ph.D., Carnegie Mellon University
Associate Professor of Mechanical and Aerospace Engineering, 1987

Navid Sabbaghi B.A., B.S., University of California-Berkeley; M.S., Ph.D., Massachusetts Institute of Technology
Assistant Professor of Management Science, 2008

Michael Saeele B.S., M.S., Illinois Institute of Technology
Instructor of Computer Science, 2004

Mazin Safar B.S., Al-Hikma University (Iraq); M.B.A., University of Chicago; M.S., Illinois Institute of Technology
Industry Associate Professor of Industrial Technology & Management and Associate Director, Industrial Technology & Management Programs, 2004

Jafar Saniee B.S., Illinois Institute of Technology; M.S., Case Western Reserve University; Ph.D., Purdue University
Filmer Professor of Electrical and Computer Engineering, Associate Chair, and Director of Graduate and Undergraduate Programs, 1983

James T. Sasaki B.S., Illinois Institute of Technology; M.S., Ph.D., Cornell University
Senior Lecturer of Computer Science and Director of the Professional Masters Program, 2003

Keiichi Sato B.S., M.S., Osaka Institute of Technology (Japan); M.S., ITT Institute of Design
Professor of Design, 1998
Valerie Scarlata**
B.A., Columbia College; M.I.T.M.,
Illinois Institute of Technology
Lecturer in Information Technology
and Management and Program and
Media Coordinator, Information
Technology and Management Degree
Programs, 2006

David Schalliol
B.A., Kenyon College; M.A.,
University of Chicago
Visiting Assistant Professor of
Sociology, 2008

Jay D. Schieber
Ph.D., University of
Wisconsin-Madison
Professor of Chemical Engineering, and
Director of the Center for the
Molecular Study of Condensed Soft
Matter, 1995

George Schipporeit
Associate Professor of Architecture,
1980

Robert C. Schleser
B.A., Rutgers University; M.S., Ph.D.,
Memphis State University
Professor of Psychology, 1982

Warren Stanley Schmaus
A.B., Princeton University; M.A.,
Ph.D., University of Pittsburgh
Professor of Philosophy and
Co-Director of Graduate Studies, 1980

Christopher W. Schmidt
B.A., Dartmouth College; M.A., Ph.D.,
Harvard University; J.D., Harvard Law
School
Visiting Associate Professor of Law,
2008

Kenneth Robert Schug
B.A., Stanford University; Ph.D.,
University of Southern California
Professor of Chemistry, 1956

Michael A. Scodro
A.B., Dartmouth College; J.D., Yale
Law School
Assistant Professor of Law, 2004

H. Larry Scott
B.S., Ph.D., Purdue University
Professor of Physics, 2000

Ullica Segerstrale
M.S., M.A., University of Helsinki
(Finland); M.A., University of
Pennsylvania; Ph.D., Harvard
University
Professor of Sociology and Camras
Advisor, 1988

Carlo U. Segre
B.S. (Physics), B.S. (Chemistry),
University of Illinois,
Urbana-Champaign; M.S., Ph.D.,
University of California-San Diego
Professor of Physics and Chemistry, and
Associate Dean of the Graduate
College, 1983

J. Robert Selman
Ingenieur in Chemical Technology,
Technical University Delft
(Netherlands); M.S., University of
Wisconsin; Ph.D., University of
California-Berkeley
Distinguished Research Professor of
Chemical Engineering, 1975

Mohammad Shahidehpour
B.S., Arya-Mehr University of
Technology (Iran); M.S., Ph.D.,
University of Missouri Columbia.
Bodine Professor of Electrical and
Computer Engineering and Chair, 1983

Hasan Modir Shanechi
B.S., M.S., Tehran University (Iran);
Ph.D., Michigan State University
Senior Lecturer of Electrical and
Computer Engineering; 2007

Carolyn Shapiro
B.A., University of Chicago; M.A.,
University of Chicago Harris Graduate
School of Public Policy; J.D.,
University of Chicago Law School
Assistant Professor of Law, 2003

Matthew A. Shapiro
B.A., University of California at San
Diego; M.A., Yonsei University (South
Korea); M.A., Ph.D., University of
Southern California
Assistant Professor of Political Science,
2008

David Carold Sharpe
B.S.Arch., Tuskegee Institute;
B.S.Arch., M.S. Arch., Illinois Institute
of Technology
Associate Professor of Architecture,
1962

Jay Shen
B.S., Hebei University (PRC); M.S.,
Chinese Academy of Sciences; Ph.D.,
University of California-Berkeley
Associate Professor of Civil and
Architectural Engineering, 1993

Tamara Goldman Sher
B.A., University of Michigan; M.A.,
Ph.D., University of North Carolina
Associate Professor of Psychology and
Director of Clinical Training, 1994

Jeffrey Guy Sherman
A.B., J.D., Harvard University
Professor of Law, 1978

Jonathan Shi
B.Sc., M.S., Wuhan University
Hydraulics and Electrical Engineering
(China); Ph.D., University of Alberta
(Canada)
Professor of Civil and Architectural
Engineering, 1999

Susan S. Sitton
B.A., Grinnell College; M.S.,
Northwestern University; Ph.D.,
Illinois Institute of Technology
Senior Lecturer in Applied
Mathematics, 1987

John William Snapper
B.A., Princeton University; M.A.,
Ph.D., University of Chicago
Associate Professor of Philosophy and
Academic Policy Coordinator, 1979

Mark Snyder
B.S., M.S., Creighton; Ph.D., Texas
Tech University; M.S., Illinois Institute
of Technology
Senior Lecturer of Civil and
Architectural Engineering, 2006

Marius Soneru
Ph.D., Illinois Institute of Technology
Senior Lecturer of Computer Science,
2001

Stephen D. Sowle
B.A., Williams College; J.D., Yale Law
School
Senior Lecturer and Assistant Dean for
Academic Administrative and Student
Affairs, IIT Chicago Kent College of
Law, 1994

Michael Irwin Spak
B.S., J.D., DePaul University; LL.M.,
Northwestern University
Professor of Law, 1974

Matthew Spenko
B.S., Northwestern University; M.S.,
Ph.D., Massachusetts Institute of
Technology
Assistant Professor of Mechanical
Engineering; 2007

Linda Klamp Spentzouris
B.A., Colorado College; Ph.D.,
Northwestern University
Associate Professor of Physics, 2001

Kathryn M. Spink
B.S., Michigan Technological
University; Ph.D., Michigan State
University
Senior Lecturer of Biology and Chair of
the Pre-Medical Advisory
Committee, 2005

Benjamin C. Stark
B.S., University of Michigan; M.Ph.,
Ph.D., Yale University
Professor of Biology and Associate
Chair, 1983

Ronald W. Staudt
B.S., B.A., St. Joseph College; J.D.,
University of Chicago Law School
Professor of Law and Associate Vice
President for Law, Business and
Technology, 1978

Joan Ellen Steinman
A.B., University of Rochester, J.D.,
Harvard Law School
Distinguished Professor of Law, 1977
Faculty

Margaret G. Stewart
B.A., Kalamazoo College; J.D., Northwestern University
Professor of Law, 1979

Keith Ann Stiverson
B.S., Rio Grande College; M.S.L.S., Catholic University of America; J.D., Georgetown University Law Center
Senior Lecturer of Law and Director of the IIT Downtown Campus Library, 2001

Karl A. Stolley
B.A., Millikin University; M.A., Ph.D., Purdue University
Assistant Professor of Technical Communication, 2007

Kent Streseman
B.A., University of California-Davis; J.D., Cornell Law School
Associate Professor of Appellate Advocacy, 1998

Mary Rose Strubbe
B.A., Mundelein College; J.D., IIT Chicago-Kent College of Law
Professor of Legal Research and Writing, Director of the Legal Research and Writing Program, and Assistant Director of Institute for Law and the Workplace, 1994

Christian Stutzki
Dipl. Ing., Ph.D., Technical University Aachen
Studio Professor of Architecture, 2006

Zack Sullivan
B.A., John Hopkins University; M.S., Ph.D., University of Illinois, Urbana-Champaign
Assistant Professor of Physics, 2008

Jiong Sun
B.Sc., Shanghai Jiao Tong University; M.Eng., National University of Singapore; M.S., Ph.D., Carnegie Mellon University
Assistant Professor of Management, 2007

Xian-He Sun
Ph.D., Michigan State University
Professor of Computer Science, 1999

Arthur S. Takeuchi
B.S., Arch., M.S., Illinois Institute of Technology
Associate Professor of Architecture, 1965

A. Dan Tarlock
A.B., LL.B., Stanford University
Distinguished Professor of Law and Director of the Program in Environmental and Energy Law, 1981

Jeff Terry
B.S., University of Chicago; Ph.D., Stanford University
Assistant Professor of Physics, 2005

Fouad A. Teymour
B.Sc., M.Sc., Cairo University (Egypt); Ph.D., University of Wisconsin-Madison
S.C. Johnson Polymer Professor of Chemical Engineering, 1992

Marin Thaler
B.F.A., Rhode Island School of Design; M.F.A., Royal College of Art (England)
Visiting Associate Professor of Design, 2008

Nick T. Thomopoulos
B.S., M.A., University of Illinois, Urbana-Champaign; Ph.D., Illinois Institute of Technology
Research Professor of Management Science, 1966

Charles Tier
Ph.D., Courant Institute (NYU)
Senior Lecturer in Applied Mathematics, 2007

Sammy Tin
B.S., California Polytechnic State University-San Luis Obispo; M.S., Carnegie Mellon University; Ph.D., University of Michigan
Associate Professor of Materials Engineering, 2006

Yagmar Torun
B.S., Middle East Technical University; Ph.D., Stony Brook University
Assistant Professor of Physics, 2006

Khairy Ahmed Tourk
B.S., University of Alexandria (Egypt); M.A., Vanderbilt University; Ph.D., University of California-Berkeley
Professor of Economics/International Business, 1972

Philip Troyk
B.S., University of Illinois, Urbana-Champaign; M.S., Ph.D., University of Illinois-Chicago
Associate Professor of Biomedical Engineering, 1983

Ray Trigstad**
B.S., United States Naval Academy; M.S.M., University of Denver
Lecturer in Information Technology and Management and Associate Director, Information Technology and Management Degree Programs, 1992

Vincent Turitto
B.Ce., Manhattan College; D.Engr.Sci., Columbia University
Professor of Biomedical Engineering and Chair, Director of the Pritzker Institute of Biomedical Science and Engineering, 2000

John R. Twombly
B.S., University of Pennsylvania; M.B.A., Ph.D., University of Chicago; Certified Public Accountant
Clinical Professor of Accounting and Finance and Associate Director of Undergraduate Programs, 1992

Benjamin E. Van Vliet
B.A., Calvin College; M.S., Illinois Institute of Technology
Lecturer of Financial Markets, 2002

David C. Venerus
B.S., University of Rhode Island; M.S., Ph.D., Pennsylvania State University
Hyosung S.R. Cho Professor of Chemical Engineering and Director of the Center of Excellence in Polymer Science and Engineering, 1989

Mickie A. Voges Piatt
B.A., M.L.S., J.D., University of Texas-Austin
Associate Professor of Law and Executive Director of the Program in Intellectual Property Law, 1990

Murat Vural
B.Sc., M.Sc., Ph.D., Istanbul Technical University (Turkey)
Assistant Professor of Mechanical and Aerospace Engineering, 2003

Peng-Jun Wan
B.S., Tsinghua University (China); Ph.D., University of Minnesota
Associate Professor of Computer Science, 1997

Haizhi Wang
B.S., Wuhan University (China); M.S., East China Normal University (China);
Ph.D., Rensselaer Polytechnic Institute
Assistant Professor of Finance, 2008

Jia Wang
B.S., Tsinghua University (China); M.S., Ph.D., Northwestern University
Assistant Professor of Electrical and Computer Engineering, 2008

Rong Wang
B.S., M.S., Jilin University (China); Ph.D., University of Tokyo (Japan)
Associate Professor of Chemistry and Associate Chair, 2000

Candace Warak
B.S., M.S., Michigan State University; Ph.D., Illinois Institute of Technology
Professor of Mechanical and Aerospace Engineering and Associate Dean of Armour College of Engineering, 1988

Richard Warner
B.A., Stanford University; Ph.D., University of California-Berkeley; J.D., University of Southern California Law Center
Professor of Law and Faculty Director of the Center for Law and Computers, 1990
Darsh Tilakchand Wasan
B.S., University of Illinois, Urbana-Champaign; Ph.D., University of California-Berkeley
Professor of Chemical Engineering and Vice President for International Affairs, 1964

Vivian M. Weil
A.B., M.A., University of Chicago; Ph.D., University of Illinois
Professor of Ethics and Director of the Center for the Study of Ethics in the Professions, 1972

Miles N. Wernick
B.A., Northwestern University; Ph.D., University of Rochester
Professor of Electrical and Computer Engineering and Director of Medical Imaging in the Pritzker Institute of Biomedical Science and Engineering, 1994

Catherine Wetzel
B.Arch., University of Cincinnati; M.Arch., University of Pennsylvania
Assistant Professor of Architecture, 1989

Christopher G. White
B.S., University of Illinois; Ph.D., University of Minnesota
Associate Professor of Physics, 1998

Patrick F. Whitney
B.F.A., University of Alberta (Canada); M.F.A., Cranbrook Academy of Art
Steelcase/Robert C. Pew Professor of Design and Dean of the IIT Institute of Design, 1983

Nilmini Wickramasinghe
B.Sc., M.B.A., University of Melbourne; Ph.D., Case Western Reserve University
Associate Professor of Organizational Behavior, 2005

David R. Williams
B.S.E., Stevens Institute of Technology; M.S.E., Ph.D., Princeton University
Professor of Mechanical and Aerospace Engineering and Director of the Fluid Dynamics Research Center, 1983

Geoffrey A. Williamson
B.S., M.S., Ph.D., Cornell University
Professor of Electrical and Computer Engineering, 1989

Vida Winans
B.A., Cornell University; M.S., Illinois Institute of Technology
Senior Instructor of Computer Science and Graduate Coordinator, 2000

Russell Wojcik
B.S., SUNY College at Oneonta; M.S., Clarkson College of Technology
Lecturer of Financial Markets, 2004

Thomas Tang Yum Wong
B.S., University of Hong Kong; M.S., Ph.D., Northwestern University
Professor of Electrical and Computer Engineering, 1981

Antony Wood
B.A., Diploma in Architecture, PGCHE, University of Nottingham; PG.Dip.Arch.Prac., De Montford University - Leicester
Studio Associate Professor of Architecture, 2006

Richard W. Wright
B.S., California Institute of Technology; J.D., Loyola University of Los Angeles; LL.M., Harvard University
Professor of Law, 1985

Bensin Wu
B.S., Tsinghua University; M.S., University of Missouri-Rolla; Ph.D., Purdue University
Assistant Professor of Mechanical Engineering, 2007

Tao L. Wu
B.A., Columbia University; Ph.D., Wharton School
Assistant Professor of Finance, 2008

Jialing Xiang
M.D., Xuzhou Medical College; Ph.D., University of Alabama-Birmingham
Assistant Professor of Biology, 2003

Yang Xu
B.S., M.S., Fudan University (China); Ph.D., Carnegie-Mellon University
Assistant Professor of Electrical and Computer Engineering, 2007

Jamal S. Yagoobi
B.S., Sharif University of Technology (Iran); M.S., Ph.D., University of Illinois, Urbana-Champaign
Professor of Mechanical Engineering and Chair, Department of Mechanical, Materials, and Aerospace Engineering, 2002

Yongyi Yang
B.S.E.E., M.S.E.E., Northern Jiaotong University (China); M.S., Ph.D., Illinois Institute of Technology
Professor of Electrical and Computer Engineering, 1995

Wai Gen Yee
B.S., University of Chicago; M.S., Ph.D., Georgia Institute of Technology
Assistant Professor of Computer Science, 2003

Iman Samil Yetik
B.S., Bogazici University (Turkey); M.S., Bilkent University (Turkey); Ph.D. University of Chicago
Assistant Professor of Electrical and Computer Engineering, 2006

Michael Young
A.B., University of Chicago; M.A., Ph.D., Adelphi University
Associate Professor of Psychology, 1996

John F. Zasadzinski
B.S., Illinois Benedictine College; Ph.D., Iowa State University
Professor of Physics and Chair, Biological, Chemical, and Physical Sciences Department, 1982

Judith Zawojewski
B.S. Ed., Ph.D., Northwestern University; M.S. Ed., National Lewis College of Education
Associate Professor of Mathematics and Science Education, 2002

Alan Zdunek
B.A., Knox College; M.S., Ph.D., Illinois Institute of Technology
Research Associate Professor for Chemical Engineering, 2004

Lulu Zeng
B.S., M.A., Tsinghua University (China); M.A., Ohio State University; M.S.I.A., Ph.D., Carnegie Mellon University
Assistant Professor of Finance, 2008

Chunbo Zhang
B.Agr., M.Agr., Zhejiang Fisheries College (China); Ph.D., University of Manitoba (Canada)
Assistant Professor of Biology, 2004

Hong Zhang
B.S., Beijing Normal University (China); M.S., Ph.D., Michigan State University
Research Associate Professor of Computer Science, 2000

Wei Zhang
B.S., M.S., Huazhong Agricultural University; Ph.D., Pennsylvania State University
Assistant Professor of Food Microbiology at National Center for Food Safety and Technology, 2005

Yuzhu Zhang
B.S., Zhengzhou University; Ph.D., University of Pennsylvania
Assistant Professor of Biology, 2001

Chi Zhou
B.S., Tsinghua University (China); M.S., Ph.D., Northwestern University
Assistant Professor of Electrical and Computer Engineering, 2006
Faculty Emeriti

William Applebaum
Associate Professor of History, 1972-1995

Ralph Elmer Armington
Professor of Electrical Engineering, 1966-1982

Robert Arzbachner
Professor of Electrical Engineering and Director of the Pritzker Institute of Medical Engineering, 1981-2001

Charles R. Bauer
Associate Professor of Computer Science, 1985-1996

David R. Beam
Associate Professor of Political Science, 1987-2004

BARRY BERNSTEIN
Professor of Chemical Engineering, 1966-2008

Robert John Bonthron
Professor of Mechanical and Aerospace Engineering, 1947-1991

Fred P. Bosselman
Professor of Law, 1991-2002

Harold Walter Bretz
Associate Professor of Microbiology, 1957-1991

Norman Nathan Breyer
Professor of Metallurgical and Materials Engineering, 1964-1991

Ilene J. Burnstein
Associate Professor of Computer Science, 1986-2003

Ray Aaron Burnstein
Professor of Physics, 1965-2001

George D. Byrne
Professor of Applied Mathematics, 1994-1998

Thomas Manuel Calero
Associate Professor of Management, 1968-1993

Joseph San-Hoon Chung
Professor of Economics, 1964-1995

William Frank Darsow
Associate Professor of Mathematics, 1961-1990

Platon C. Deliyannis
Professor of Applied Mathematics, 1962-2003

Rollin Dix
Professor of Mechanical Engineering, 1964-2004

Lloyd Hamilton Donnell
Research Professor of Mechanics, 1939-1962

John Thomas Dygdon
Professor of Engineering Graphics, 1952-1996

Walter C. Eisenberg
Professor of Chemistry, 1987-2003

Thomas Erber
Distinguished Professor of Physics, 1957-2007

Joseph A. Erwin
Associate Professor of Biology, 1967-2001

Martha Evens
Professor of Computer Science, 1975-2003

Paul Edward Fanta
Professor of Chemistry, 1948-1984

Robert Filler
Professor of Chemistry, 1955-1994

Maurice J. Frank, Jr.
Professor of Applied Mathematics, 1976-2008

Glen O. Geist
Professor of Psychology, 1971-2003

Lois Graham
Professor of Mechanical Engineering, 1949-1985

Nicholas Grecz
Professor of Microbiology, 1963-1982

Peter H. Greene
Associate Professor of Computer Science, 1974-2003

Sidney Aaron Guralnick
Perlstein Distinguished Professor of Engineering, 1958-2004

R. Ogden Hannaford
Professor of Architecture, 1960-1986

Boyd A. Hartley
Associate Professor of Fire Protection and Safety Engineering, 1966-1985

Isidore Hauser
Professor of Physics, 1958-1986

Geoffrey Trevor Higgins
Professor of Materials Engineering, 1969-1998

Robert Francis Irving
Associate Professor of English, 1967-1995

Donald Komen Jasper
Associate Professor of Biology, 1969-1996

Porter Wear Johnson
Professor of Physics, 1969-2008

Serope Kalpakjian
Professor of Mechanical and Materials Engineering, 1963-2001

C. Jottin Khisty
Professor of Civil and Architectural Engineering, 1990-2002

Daniel Koblick
Associate Professor of Physiology, 1963-1991

Willis George Labes
Professor of Fire Protection Engineering, 1946-1979

Zalman Lavan
Professor of Mechanical and Aerospace Engineering, 1965-1991

Robert Joseph Mallihit
Professor of Physics, 1956-1987

Thomas Lyle Martin Jr.
President and Professor of Electrical Engineering, 1974-1987

Kenneth Phillip Milbradt
Associate Professor of Civil Engineering, 1946-1985

Mark Vladimir Morkovin
Professor of Mechanical Engineering, 1967-1982

H. Lennart Pearson
Associate Professor of Applied Mathematics and Dean of Graduate Studies, 1954-1994

Robert William Porter
Professor of Mechanical and Aerospace Engineering, 1966-2001

Bernard Rasof
Professor of Mechanical Engineering, 1964-1982

John Theodore Rettalia
Professor of Mechanical Engineering and President Emeritus, 1945-1973

Robert Mark Roth
Professor of Biology, 1968-2003

Allan H. Roush
Professor of Biochemistry, 1951-1982

Gerald F. Saletta
Associate Professor of Electrical and Computer Engineering, 1962-2006

Abe Sklar
Professor of Mathematics, 1956-1995

Spencer B. Smith
Professor of Management Sciences and Industrial Management, 1966-1996
Harold Norman Spector
Professor of Physics, 1966-2001

Henry Stark
Professor of Electrical and Computer Engineering, 1988-2008

Edwin Stueben
Associate Professor of Applied Mathematics, 1962-2006

Bernet Steven Swanson
Professor of Chemical Engineering, 1945-1985

San Utsunomiya
Associate Professor of Architecture, 1966-1993

John Lawrence Way
Professor of Mechanical and Aerospace Engineering, 1970-2001

Erwin Wilbur Weber
Associate Professor of Electrical and Computer Engineering, 1961-1998

Dale Arroy Webster
Professor of Biology, 1968-2001

Alan Wolach
Professor of Psychology, 1969-2004

David Mordecai Zesmer
Professor of English, 1962-1992

Earl Frederick Zwicker
Professor of Physics, 1956-1991
Maps

Main Campus

[Map of the Main Campus of Illinois Institute of Technology, including landmarks such as Stuart Field, Life Sciences, Morton Hall, and others. Key to specific locations and buildings is provided in the margins.]
Downtown Campus and Institute of Design

Rice Campus
Directions

Getting to the Main Campus

Airports

IIT and Chicago are served by O’Hare International Airport and Midway Airport. Public and private transportation is available from the airports to downtown Chicago and IIT campuses.

Train

Commuter railroads to Union and Northwestern train stations (both off Canal Street), then public transportation, taxi or IIT shuttle bus from the Downtown Campus at 565 W. Adams Street to Main Campus.

Bus

To Greyhound terminal, then taxi or public transportation to IIT.

Public Transportation

1. CTA Red Line (Howard-Dan Ryan) to 35th Street Station.
2. CTA Green Line (Lake-Englewood-Jackson Park) to 35-Bronzeville-IIT station.
3. CTA bus lines with stops on State Street (#29) or Michigan Avenue (#35).

Automobile

From North: Dan Ryan Expressway east to 31st Street exit, continue south to 33rd Street, turn left (east) to just past State Street. Visitor parking is on the right (south-east corner).

From South: Dan Ryan Expressway west to 35th Street exit, continue north to 33rd Street, turn right (east) to just past State Street. Visitor parking is on the right (southeast corner).

From Lake Shore Drive: Exit at 31st Street, go inland (west) to State Street, turn left (south) to 33rd Street, turn left and visitor parking is on the right (southeast corner).

Parking

Some visitor parking is available in lots at the southeast corner of 33rd and State streets and the northeast corner of 31st and State streets. By special arrangement, events parking is usually available in the fraternity lot at 33rd and Wabash and, for evening events, in the lot west of Hermann Union Building. A few hourly spaces are available just south of the Commons Building and west of Hermann Union Building. Please call the Public Safety Department at 312.808.6300 if you need assistance in finding parking.
Index

<table>
<thead>
<tr>
<th>Academic Calendar</th>
<th>Civil Engineering Courses</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Competitiveness Grant</td>
<td>Civil Engineering Program</td>
<td>111</td>
</tr>
<tr>
<td>see also Financial Aid</td>
<td>College-Level Credit</td>
<td>210</td>
</tr>
<tr>
<td>Accreditation</td>
<td>College of Architecture</td>
<td>157</td>
</tr>
<tr>
<td>Administration of IIT</td>
<td>College of Science and Letters</td>
<td>115</td>
</tr>
<tr>
<td>see Undergraduate Admission</td>
<td>Communication Courses</td>
<td>6</td>
</tr>
<tr>
<td>see Transfer Admission</td>
<td>Minor</td>
<td>255</td>
</tr>
<tr>
<td>Advanced Placement</td>
<td>Minor Program</td>
<td>4</td>
</tr>
<tr>
<td>see also college-level credit</td>
<td>see also Humanities</td>
<td>13</td>
</tr>
<tr>
<td>Advising</td>
<td>see also General Education Requirements</td>
<td>210</td>
</tr>
<tr>
<td>Aerospace Engineering Courses</td>
<td>Computer Engineering Courses</td>
<td>109</td>
</tr>
<tr>
<td>Minor</td>
<td>Computer Information Systems</td>
<td>93</td>
</tr>
<tr>
<td>Program</td>
<td>see also Humanities</td>
<td>172</td>
</tr>
<tr>
<td>Air Force</td>
<td>Computer Science Courses</td>
<td>194</td>
</tr>
<tr>
<td>see ROTC</td>
<td>Computer Science Program</td>
<td>89</td>
</tr>
<tr>
<td>Anthropology</td>
<td>Counseling Center Courses</td>
<td>253</td>
</tr>
<tr>
<td>Applied Anthropology</td>
<td>Dean’s List Courses</td>
<td>244</td>
</tr>
<tr>
<td>Courses</td>
<td>Dismissal Courses</td>
<td>242</td>
</tr>
<tr>
<td>Minor</td>
<td>Diversity Education Courses</td>
<td>258</td>
</tr>
<tr>
<td>Program</td>
<td>Economics Courses</td>
<td>202</td>
</tr>
<tr>
<td>Architectural Engineering</td>
<td>Educational Services Courses</td>
<td>254</td>
</tr>
<tr>
<td>Architecture</td>
<td>see also Humanities</td>
<td>247</td>
</tr>
<tr>
<td>Courses</td>
<td>Leadership Academy</td>
<td>255</td>
</tr>
<tr>
<td>Minor</td>
<td>Library</td>
<td>255</td>
</tr>
<tr>
<td>Program</td>
<td>Mathematics</td>
<td>213</td>
</tr>
<tr>
<td>Armour College of Engineering</td>
<td>Mapping</td>
<td>20</td>
</tr>
<tr>
<td>Athletics</td>
<td>see also Financial Aid</td>
<td>284</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Engineering Graphics</td>
<td>202</td>
</tr>
<tr>
<td>Minor</td>
<td>Engineering Management</td>
<td>87</td>
</tr>
<tr>
<td>Program</td>
<td>Environmental Engineering</td>
<td>see also General Education Requirements</td>
</tr>
<tr>
<td>Biology</td>
<td>Courses</td>
<td>204</td>
</tr>
<tr>
<td>Courses</td>
<td>Minor</td>
<td>157</td>
</tr>
<tr>
<td>Minor</td>
<td>Expenses</td>
<td>22</td>
</tr>
<tr>
<td>Program</td>
<td>Faculty</td>
<td>269</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>Faculty Emeriti</td>
<td>282</td>
</tr>
<tr>
<td>Courses</td>
<td>Financial Aid</td>
<td>16-21</td>
</tr>
<tr>
<td>Minor</td>
<td>see also college-level credit</td>
<td>see also Humanities</td>
</tr>
<tr>
<td>Program</td>
<td>see Academic Calendar</td>
<td>see also Humans</td>
</tr>
<tr>
<td>Calendar</td>
<td>Grade Point Average</td>
<td>246</td>
</tr>
<tr>
<td>see Academic Calendar</td>
<td>Grades</td>
<td>245</td>
</tr>
<tr>
<td>Careers</td>
<td>Graduate College</td>
<td>6</td>
</tr>
<tr>
<td>see also Maps</td>
<td>Graduation</td>
<td>247</td>
</tr>
<tr>
<td>Career Management Center</td>
<td>Greek Life</td>
<td>7</td>
</tr>
<tr>
<td>Center for Professional Development</td>
<td>see Fraternity and Sorority Life</td>
<td>254</td>
</tr>
<tr>
<td>Change of Major</td>
<td>Health Center</td>
<td>254</td>
</tr>
<tr>
<td>Chemistry</td>
<td>History</td>
<td>204</td>
</tr>
<tr>
<td>Courses</td>
<td>History of IIT</td>
<td>7</td>
</tr>
<tr>
<td>Minor</td>
<td>see Academic Calendar</td>
<td>248</td>
</tr>
<tr>
<td>Program</td>
<td>see also General Education Requirements</td>
<td>6</td>
</tr>
<tr>
<td>Chicago-Kent College of Law</td>
<td>see also Humanities</td>
<td>172</td>
</tr>
<tr>
<td>City and Regional Planning</td>
<td>see also General Education Requirements</td>
<td>see also Humanities</td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
<th>Section</th>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>227</td>
<td>Repeating Courses</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>157</td>
<td>Residence Life</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>53</td>
<td>Residence Requirements</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>PLUS Loan</td>
<td>18</td>
<td>Rotation</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>see also Financial Aid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courses</td>
<td>229</td>
<td>Military Science Courses</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>157</td>
<td>Shimer College</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>see also Special Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premedical Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>158</td>
<td>Social Sciences</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>see also Sociology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>55</td>
<td>Sociology</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>Probation</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof & Tech Communication</td>
<td>107</td>
<td>Minor</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>see also Sociology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Programs</td>
<td>159-166</td>
<td></td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>158</td>
<td>Stafford Loan</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>see also Financial Aid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Administration</td>
<td>234</td>
<td>Statistics</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Registration</td>
<td>248</td>
<td>Stuart School of Business</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Reinstatement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>see also Business</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Telephone Directory

Maps for the Downtown, Main, and Rice campuses are on pages 284-285. When calling from a campus phone, use last five digits only.

Administrative and Service

<table>
<thead>
<tr>
<th>Service</th>
<th>Phone Number</th>
<th>Location</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Resource Center</td>
<td>312.567.5216</td>
<td>Hermann Union Building</td>
<td>312.567.7044</td>
</tr>
<tr>
<td>Access Card and Parking Services</td>
<td>312.567.8968</td>
<td>Housing Office</td>
<td>312.567.5075</td>
</tr>
<tr>
<td>Admission, Undergraduate (full-time)</td>
<td>312.567.3025</td>
<td>IIT Online Technical Services</td>
<td>312.567.3457</td>
</tr>
<tr>
<td>Alumni Relations</td>
<td>312.567.5040</td>
<td>International Center</td>
<td>312.567.3680</td>
</tr>
<tr>
<td>Athletics & Recreation</td>
<td>312.567.3296</td>
<td>IPRO Program</td>
<td>312.567.3986</td>
</tr>
<tr>
<td>Bookstore - Barnes & Noble</td>
<td>312.567.3120</td>
<td>Galvin Library (Main Campus)</td>
<td>312.567.3355</td>
</tr>
<tr>
<td>Bursar's Office</td>
<td>312.567.3785</td>
<td>McCormick Tribute Campus Center</td>
<td>312.567.3700</td>
</tr>
<tr>
<td>Campus Ministry</td>
<td>312.567.6800</td>
<td>Moffett Campus</td>
<td>708.563.1576</td>
</tr>
<tr>
<td>Career Management Center</td>
<td>312.567.3104</td>
<td>Multicultural Programs</td>
<td>312.567.5250</td>
</tr>
<tr>
<td>Communications & Marketing</td>
<td>312.567.5963</td>
<td>Public Safety</td>
<td>312.808.6300</td>
</tr>
<tr>
<td>Computing & Network Services</td>
<td>312.808.7132</td>
<td>Residence Life Office</td>
<td>312.808.6400</td>
</tr>
<tr>
<td>Counseling Services</td>
<td>312.567.7044</td>
<td>Daniel F. and Ada L. Rice Campus</td>
<td>630.682.6000</td>
</tr>
<tr>
<td>Disability Resources</td>
<td>312.567.3021</td>
<td>Student Activities</td>
<td>312.567.7043</td>
</tr>
<tr>
<td>Educational Services</td>
<td>312.567.3300</td>
<td>Student Affairs</td>
<td>312.567.3080</td>
</tr>
<tr>
<td>Financial Aid</td>
<td>312.567.3120</td>
<td>Student Records and Registration</td>
<td>312.567.3100</td>
</tr>
<tr>
<td>Graduate Admission</td>
<td>312.567.3024</td>
<td>Student Service Center</td>
<td>312.567.3100</td>
</tr>
<tr>
<td>Graduate College</td>
<td>312.567.3230</td>
<td>Women Outreach and Resource Center</td>
<td>312.567.5250</td>
</tr>
<tr>
<td>Fraternity & Sorority Life</td>
<td>312.567.5133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Services</td>
<td>312.808.7100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colleges and Academic Units

<table>
<thead>
<tr>
<th>College</th>
<th>Phone Number</th>
<th>Department</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Architecture</td>
<td>312.567.3230</td>
<td>College of Science & Letters</td>
<td>312.567.3800</td>
</tr>
<tr>
<td>Armour College</td>
<td>312.567.3009</td>
<td>Applied Mathematics</td>
<td>312.567.8880</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>312.567.5324</td>
<td>Biological, Chemical, & Physical Sciences</td>
<td>312.567.3480</td>
</tr>
<tr>
<td>Chemical & Biological Engineering</td>
<td>312.567.3040</td>
<td>Computer Science</td>
<td>312.567.5150</td>
</tr>
<tr>
<td>Civil, Architectural, & Engineering</td>
<td>312.567.3540</td>
<td>Lewis Department of Humanities</td>
<td>312.567.3465</td>
</tr>
<tr>
<td>Electrical & Computer Engineering</td>
<td>312.567.3400</td>
<td>Mathematics & Science Education</td>
<td>312.567.3661</td>
</tr>
<tr>
<td>Mechanical, Materials, & Aerospace Engineering</td>
<td>312.567.3175</td>
<td>Social Sciences</td>
<td>312.567.5128</td>
</tr>
<tr>
<td>Center for Professional Development</td>
<td>630.682.6008</td>
<td>MPA (M.S. Public Administration)</td>
<td>312.906.5198</td>
</tr>
<tr>
<td>Information Technology & Management</td>
<td>630.682.6008</td>
<td>Chicago-Kent College of Law</td>
<td>312.906.5000</td>
</tr>
<tr>
<td>Industrial Technology & Management</td>
<td>312.567.3650</td>
<td>Stuart School of Business</td>
<td>312.906.6500</td>
</tr>
<tr>
<td>Institute of Design</td>
<td>312.595.4900</td>
<td>Center for Financial Markets</td>
<td>312.906.6506</td>
</tr>
<tr>
<td>Institute of Psychology</td>
<td>312.567.3500</td>
<td>Air Force - Aerospace Studies</td>
<td>312.567.3525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Army - Military Science</td>
<td>312.808.7140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Navy - Naval Science</td>
<td>312.567.3530</td>
</tr>
</tbody>
</table>