“The more laws and order are made prominent, the more thieves and robbers there will be.” Lao Tzu

How To Steal a Virtual Machine
System and Network Security
Professors: Bill Lidinsky and Kevin Vaccaro
Assistants: Jeremy Hajek and Dawid Broda

Burim Bakalli
Frederick Eichhorst
Madeleine England
Virtualization

- Software used to create virtual resources from physical resources
- Run multiple virtual machines on a single physical machine
- Sharing of resources
- Rapid rate of adoption across IT field
- Implemented through the use of Virtual Infrastructures
Virtual Infrastructure

- Hypervisor (also known as the Virtual Machine Monitor)
- Provides the platform that virtual machines sit on
- Can be either:
 - Software run on top of another operating system
 - Software installed on the physical system without an operating system (also known as bare-metal hypervisor)
VI Security

- Unique threats to VI
- Many systems directly tied to one single environment
- Virtual Infrastructures created without a plan, with best practices ignored or unknown
- Administrators uninformed about security issues and known vulnerabilities
- Improve security through demonstration of vulnerabilities
Project Goal

- Steal a Virtual Machine from an un-protected host in a “typical” network scenario
- Use VASTO, a suite of Metasploit plug-ins created by Claudio Criscione, for doing VI penetration tests
- Exploit a known vulnerability in older VMware environments
- Replicate Claudio’s demonstration at the Troopers conference
“Typical” Network Scenario

- Virtual Infrastructure is not secured properly
 - Weak passwords
 - Updates and patches not current
 - Weak network configuration
 - More common than most would like to admit
A malicious user can bypass authenticating to a host and download any files they want, including entire Virtual Machines.

First reported by Justin Morehouse and Jason Kratzer.

Described in VMware Security Advisory VMSA-2009-0015 section 3b.

“A directory traversal vulnerability allows for remote retrieval of any file from the host system.”
The Plan

- Create an environment based on the “typical” scenario described
- Create a VM inside the Victim ESXi Server
- Using an edited VASTO vmware_guest_stealer module, exploit the vulnerability, break into the ESXi Server, and steal the VM
- Transfer the stolen VM to the attacker ESXi Server
- Create a new VM from the stolen data and use it
Software and Operating Systems

- **Client System**
 - Windows XP, VI Client software installed

- **Management Server**
 - Windows Server 2003, VI Server installed

- **Attacker System**
 - Ubuntu, VASTO designed to work with Linux/Ubuntu
 - Metasploit, a popular application for penetration testing
 - VASTO, plug-ins for Metasploit, ruby scripts focusing on VIs

- **Host Servers (Attacker and Victim)**
 - ESXi 3.5, free, small, bare-metal hypervisor from VMware.
Project Environment

VMware vCenter Client

VMware vCenter Server (Not Used)

ESXi/ESXi Virtual Host (Victim)

Virtual Machine (Target)

Connect to Manage Environment

Manage Directly

Outside Attacker

Metasploit with VASTO (Attacker)

ESXi/ESXi Virtual Host (Attacker)
Attacker Environment

- Ubuntu 10.4
- Metasploit Framework 3.5.1
- Metasploit requires Ruby
 - Ubuntu does not provide Ruby by default
 - Ruby support must be installed on the system using the apt-get command
- VASTO 0.3 plug-ins
- Attacker ESXi Server will be used to access stolen data
Victim Environment

- Operating system and applications set up with default configurations
- Systems and servers located in the same network
- Target VM created
Exploitation Setup

- **Attacker System**
 - Load `vmware_guest_stealer` module
- **Set parameters for Ruby script**
 - `RHOSTS` (the Host Server IP address)
 - `RPORT` (443)
 - `TARGET` (ESXi)
- **Exploit**
 - Metasploit checks if Host is vulnerable to exploit
 - Provides a list of all vulnerable virtual machines
Exploitation

- Set parameters of FILE (the full path and name of vm)
- Set OPERATION (FILE, to download files)
- Exploit
 - Download the VM files off of the host
Failure

- Ruby script
 - SSL verification
 - “grep” command
 - Un-locatable information in the .vmdk file
- Power-on failure
 - Vmdk flat file can’t be downloaded when the VM is on
Files
- `vmname.vmx`
- `vmname.vmdk`
- `vmname-flat.vmdk`

May be more than one vmdk and flat.vmdk file
- One of each will be created for each virtual hard disk on the virtual machine

Files are on the attacker system
Accessing the VM

- Confirm stolen files can be used by the attacker
- Transfer stolen files to VI Client capable PC
- Upload files to Attacker ESXi Server
- Create new VM using stolen files
- Open VM and view contents
Prevent the Exploit From Working

- Update, Update, Update!
- Protect the network
- Follow best practices (patching, configuration, etc.)
- Educate admins on Virtualization security
- Protect the VM the same way you would a physical machine and mission-critical files — It is both!
Virtualization security is a new area of development, and not well understood by many.

Vulnerabilities, when not dealt with, can have disastrous consequences.

Critical to employ the same security measures in a virtual environment as in a physical environment.

Education in virtualization security is key to protecting virtual environments.
Demonstration

- Show the target VM
- Open Metasploit and load in VASTO
- Run the exploit to show vulnerable VMs
- Run the exploit to steal the VM
- Move stolen files to Attacker ESXi host
- Create a new VM using the stolen data
- Show the new VM to confirm the VM was stolen
- http://www.youtube.com/watch?v=s1HOShB1D6k
Thanks

- Claudio Criscione. Without his desire and expertise in VI exploitation, we would have not gained the in-depth understanding and knowledge that we now have.

- Bill Lidinsky, Kevin Vaccaro and Dawid Broda for their ideas and encouragement.

- Jeremy Hajek for helping us acquire the hardware and software.